NCERT TEXT BOOK EXERCISES
EXERCISE-5.1
- In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine
(i) sin A, cos A(ii) sin C, cos C
- In the given figure find tan P − cot R
- If sin A =, calculate cos A and tan A.
- Given 15 cot A = 8. Find sin A and sec A
- Given sec θ =, calculate all other trigonometric ratios.
- If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
- If cot θ =, evaluate
(i) (ii) cot2 θ
- If 3 cot A = 4, Check whether
- In ΔABC, right angled at B. If, find the value of
(i) sin A cos C + cos A sin C
(ii) cos A cos C − sin A sin C
- In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
- State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A =for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A
(v) sin θ =, for some angle θ
EXERCISE-5.2
- Evaluate the following
(i) sin60° cos30° + sin30° cos 60°
(ii) 2tan245° + cos230° − sin260°
(iii)
(iv)
(v)
- Choose the correct option and justify your choice.
(i) =
(A). sin60° (B). cos60°
(C). tan60° (D). sin30°
(ii)
(A). tan90° (B). 1
(C). sin45° (D). 0
(iii) sin2A = 2sinA is true when A =
(A). 0° (B). 30°
C). 45° (D). 60°
(iv)
(A). cos60° (B). sin60°
(C). tan60° (D). sin30°
- If and;
0° < A + B ≤ 90°, A > B find A and B.
- State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B
(ii) The value of sin θ increases as θ increases
(iii) The value of cos θ increases
as θ increases
(iv) sin θ = cos θ for all values of θ
(v) cot A is not defined for A = 0°
EXERCISE-5.3
- Evaluate
(I)
(II)
(III) cos 48° − sin 42°
(IV) cosec 31° − sec 59°
- Show that
(I) tan 48° tan 23° tan 42° tan 67° = 1
(II) cos 38° cos 52° − sin 38° sin 52° = 0
- If tan 2A = cot (A− 18°), where 2A is an acute angle, find the value of A.
- If tan A = cot B, prove that A + B = 90°
- If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
- If A, Band C are interior angles of a triangle ABC then show that
- Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
EXERCISE-5.4
- Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
- Write all the other trigonometric ratios of ∠A in terms of sec A.
- Evaluate
(i)
(ii) sin25° cos65° + cos25° sin65°
- Choose the correct option. Justify your choice.
(i) 9 sec2 A − 9 tan2 A =
(A) 1 (B) 9 (C) 8 (D) 0
(ii) (1+tan θ + sec θ) (1 + cot θ − cosec θ)
(A) 0 (B) 1 (C) 2 (D) −1
(iii) (secA + tanA) (1 − sinA) =
(A) secA (B) sinA
(C) cosecA (D) cosA
(iv)
(A) sec2 A (B) −1
(C) cot2 A (D) tan2 A
- Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)