Exponents and Powers

EXERCISE-12.1

P1. Evaluate

(i) 3−2

(ii) (−4)−2

(iii) (12)5

Sol. (i) 32=132=19            am=1am

(ii) 42=142=19         am=1am

(iii) 125=1(2)5=25=2×2×2×2×2=32

P2. Simplify and express the result in power notation with positive exponent.

(i) (4)5÷(4)8

(ii) (123)2

(iii) (3)4×(53)4

(iv) (37÷310)×35

(v) 23×(7)3

Sol. (i) (−4)5 ÷ (−4)8 = (−4)5 − 8          (am ÷ an = am − n)

= (− 4)−3

1(4)3       am=1am

(ii) 1232=1232=126     amn=amn

(iii) 34×534=1×34×5434

= 14×34×5434       (ab)m=am×bn

= 14×34×5434      (ab)m=am×bm

= (1)4×54

=54(1)4=1

(iv)  (3− 7 ÷ 3−10) × 3−5 = (3−7 − (−10)) × 3−5     

(am ÷ an = a− n)

= 33 × 3−5

= 33 + (− 5)          (am × an = am + n)

= 3−2

132       am=1am

(v) 2−3 × (−7)−3 

123×1(7)3        am=1am

= 1[2×(7)]3         am×bm=(ab)m

= 1(14)3

P3. Find the value of.

(i) (30 + 4−1) × 22

(ii) (2−1 × 4−1) ÷2−2

(iii) (12)2+(13)2+(14)2

(iv) (3−1 + 4−1 + 5−1)0

(v) {232}2

Sol. (i) 30+41×22=1+14×22       a0=1 and am=1am

54×4=5

(ii) (2−1 × 4−1) ÷ 2− 2 = [2−1 × {(2)2}− 1] ÷ 2− 2

= (2− 1 × 2− 2) ÷ 2− 2           amn=amn

= 2−1+ (−2) ÷ 2−2               (am × an = am + n)

= 2−3 ÷ 2−2

= 2−3 − (−2)                          (am ÷ an = am − n)

= 2−3 + 2 = 2 −1

=12                 am=1am

(iii) 122+132+142

212+312+412             am=1am

= 22+32+42=4+9+16=29

(iv) (3−1 +4−1 +5−1)0 

13+14+150              am=1am

= 1 (a0 = 1)

(v) 2322=3222

= 32(2)22=942=8116

P4. Evaluate

(i) 81×5324

(ii) (51×21)×61

Sol. (i) 81×5324=24×5381

24×5323=243×53

2×125=250

(ii) 51×21×61=15×12×16

= 110×16=160

P5. Find the value of m for which  5m ÷5−3 = 55.

Sol. 5m ÷ 5−3 = 55

5m − (− 3) = 55              (am ÷ an = am − n)

5m + 3 = 55

Since the powers have same bases on both sides, their respective exponents must be equal.

m + 3 = 5

m = 5 − 3

m = 2

P6. Evaluate

(i) {131141}1

(ii) (58)7×(85)4

Sol. (i) 1311411=3114111

= {34}1={1}1=11=1

(ii) 587×854=5787×8454

=8757×5484am=1am

= 874574am÷an=amn

= 8353=512125

Q7. Simplify.

(i) 25×t453×10×t8(t0)

(ii) 35×105×12557×65

Sol. (i) 25×t453×10×t8=52×t453×5×2×t8

= 52×t453+1×2×t8        am×an=am+n

=52×t452×2×t8

=52+2×t4+82

=54×t42=625t42

(ii) 35×105×12557×65

=35×(2×5)5×5357×(2×3)5

= 35(5)×25(5)×55+3(7)

= 30×20×55  a0=1

= 55

EXERCISE-12.2

P1. Express the following numbers in standard form.

(i) 0.0000000000085

(ii) 0.00000000000942

(iii) 6020000000000000

(iv) 0.00000000837

(v) 31860000000

Sol. (i) 0.0000000000085 = 8.5 × 10−12

(ii) 0.00000000000942 = 9.42 × 10−12

(iii) 6020000000000000 = 6.02 × 1015

(iv) 0.00000000837 = 8.37 × 10−9

(v)  31860000000 = 3.186 × 1010

P2. Express the following numbers in usual form.

(i) 3.02 × 10−6        (ii) 4.5 × 104

(iii) 3 × 10−8               (iv) 1.0001 × 109

(v) 5.8 × 1012             (vi) 3.61492 × 106

Sol. (i) 3.02 × 10−6 = 0.00000302

(ii) 4.5 × 104 = 45000

(iii) 3 × 10−8 = 0.00000003

(iv) 1.0001 × 109 = 1000100000

(v) 5.8 × 1012 = 5800000000000

(vi) 3.61492 × 106 = 3614920

P3. Express the number appearing in the following statements in standard form.

(i)  1 micron is equal to 11000000 m.

(ii) Charge of an electron is 0.000, 000, 000, 000, 000, 000, 16 coulomb.

(iii) Size of a bacteria is 0.0000005 m

(iv) Size of a plant cell is 0.00001275 m

(v) Thickness of a thick paper is 0.07 mm

Sol. (i) 11000000= 1 × 10−6

(ii) 0.000, 000, 000, 000, 000, 000, 16 = 1.6 × 10−19

(iii) 0.0000005 = 5 × 10−7

(iv) 0.00001275 = 1.275 × 10−5

(v) 0.07 = 7 × 10−2

P4. In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack?

Sol. Thickness of each book = 20 mm

Hence, thickness of 5 books = (5 × 20) mm = 100 mm

Thickness of each paper sheet = 0.016 mm

Hence, thickness of 5 paper sheets = (5 × 0.016) mm = 0.080 mm

Total thickness of the stack = Thickness of 5 books + Thickness of 5 paper sheets

= (100 + 0.080) mm

= 100.08 mm

= 1.0008 × 102 mm

Was this article helpful to you? Yes No