Algebraic Expressions and Identities

EXERCISE-9.1

P1. Identify the terms, their coefficients for each of the following expressions.

(i) 5xyz2 − 3zy

(ii) 1 + x + x2

(iii) 4x2y2 − 4x2y2z2 + z2

(iv) 3 − pq + qr − rp

(v) x2+y2xy

(vi) 0.3a − 0.6ab + 0.5b

Sol. The terms and the respective coefficients of the given expressions are as follows.

Terms

Coefficients

(i)

5xyz2

− 3zy

5

− 3

(ii)

1

x

x2

1

1

1

(iii)

4x2y2

− 4x2y2z2

z2

4

− 4

1

(iv)

3

− pq

qr

− rp

3

−1

1

−1

(v)

x2y2

− xy

1212

− 1

(vi)

0.3a

− 0.6ab

0.5b

0.3

− 0.6

0.5

P2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?

x + y,  1000, x + x2 + x3 + x4,   7 + y + 5x,   2y − 3y2,  2y − 3y2 + 4y3,  5x − 4y + 3xy,  4z −15z2ab + bc + cd + da, pqrp2q + pq2, 2p + 2q

Sol. The given expressions are classified as

Monomials : 1000, pqr

Binomials : x + y, 2y − 3y2, 4z − 15z2p2q + pq2, 2p + 2q

Trinomials :  7 + y + 5x, 2y − 3y2 + 4y3, 5x − 4y + 3xy

Polynomials that do not fit in any of these categories are

x + x2 + x3 + x4ab + bc + cd + da

P3. Add the following.

(i) ab − bcbc − caca − ab

(ii) a − b + abb − c + bcc − a + ac

(iii) 2p2q2 − 3pq + 4, 5 + 7pq − 3p2q2

(iv) l2 + m2m2 + n2n2 + l2, 2lm +2mn + 2nl

Sol. The given expressions written in separate rows, with like terms one below the other and then the addition of these expressions are as follows.

(i)  abbc+  bcca+  ab+ca0

Thus, the sum of the given expressions is 0.

(ii)        a  b + ab+         b     c + bc+       a                 c + ac__________________________                               ab+bc+ac

Thus, the sum of the given expressions is ab + bc + ac.

(iii)  2p2q23pq+4+  3p2q2+7pq+5p2q2+4pq+9

Thus, the sum of the given expressions is −p2q2 + 4pq + 9.

(iv)              l2 + m2+                 m2 + n2+         l2           + n2+                               2lm + 2mn + 2nl________________________________   2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl

Thus, the sum of the given expressions is 2(l2 + mnlm + mn + nl).

P4. (a) Subtract 4a − 7ab + 3b + 12 from 12a − 9ab + 5b − 3

(b) Subtract 3xy + 5yz − 7zx from 5xy − 2yz − 2zx + 10xyz

(c) Subtract 4p2q − 3pq + 5pq2 − 8p + 7q − 10 from 18 − 3p − 11q + 5pq − 2pq2 + 5p2q

Sol. The given expressions in separate rows, with like terms one below the other and then the subtraction of these expressions is as follows.

(a) 12a9ab+5b34a7ab+3b+12()(+)  ()  () 8a2ab+2b15

(b) 5xy2yz2zx+10xyz3xy+5yz7zx() ()     (+) 2xy7yz+5zx+10xyz

(c)    183p11q+5pq2pq2+5p2q108p+7q3pq+5pq2+4p2q(+)  (+)  ()  (+)()()____________________________  28+5p18q+8pq7pq2+p2q

EXERCISE-9.2

P1. Find the product of the following pairs of monomials.

(i) 4, 7p

(ii) − 4p, 7p

(iii) − 4p, 7pq

(iv) 4p3, − 3p

(v) 4p, 0

Sol. The product will be as follows.

(i) 4 × 7p = 4 × 7 × p = 28p

(ii) − 4p × 7p = − 4 × p × 7 × p = (− 4 × 7) × (p × p) = − 28 p2

(iii) − 4p × 7pq = − 4 × p × 7 × p × q = (− 4 × 7) × (p × p × q) = − 28p2q

(iv) 4p3 × − 3p = 4 × (− 3) × p × p × p × p = − 12 p4

(v) 4p × 0 = 4 × p × 0 = 0

P2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.

(pq); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)

Sol. We know that,

Area of rectangle = Length × Breadth

Area of 1st rectangle = p × q = pq

Area of 2nd rectangle = 10m × 5n = 10 × 5 × m × n = 50 mn

Area of 3rd rectangle = 20x2 × 5y2 = 20 × 5 × x2 × y2  = 100 x2y2

Area of 4th rectangle = 4x × 3x2 = 4 × 3 × x × x2 = 12x3

Area of 5th rectangle = 3mn × 4np = 3 × 4 × m × n × n × p  = 12mn2p

P3. Complete the table of products.

 First monomial  Second monomial 

2x

− 5y

3x2

− 4xy

7x2y

− 9x2y2

2x

4x2

− 5y

− 15x2y

3x2

− 4xy

7x2y

− 9x2y2

Sol. The table can be completed as follows.

 First monomial  Second monomial 

2x

− 5y

3x2

− 4xy

7x2y

− 9x2y2

2x

4x2

− 10xy

6x3

− 8x2y

14x3y

− 18x3y2

− 5y

− 10xy

25 y2

− 15x2y

20xy2

− 35x2y2

45x2y3

3x2

6x3

− 15x2y

9x4

− 12x3y

21x4y

− 27x4y2

− 4xy

− 8x2y

20xy2

− 12x3y

16x2y2

− 28x3y2

36x3y3

7x2y

14x3y

− 35x2y2

21x4y

− 28x3y2

49x4y2

− 63x4y3

− 9x2y2

− 18x3y2

45 x2y3

− 27x4y2

36x3y3

− 63x4y3

81x4y4

P4. Obtain the volume of rectangular boxes with the following length, breadth and height respectively.

(i) 5a, 3a2, 7a4

(ii) 2p, 4q, 8r

(iii) xy, 2x2y, 2xy2

(iv) a, 2b, 3c

Sol. We know that,

Volume = Length × Breadth × Height

(i) Volume = 5a × 3a2 × 7a4 = 5 × 3 × 7 × a × a2 × a4 = 105 a7

(ii) Volume = 2p × 4q × 8r = 2 × 4 × 8 × p × q × r = 64pqr

(iii) Volume = xy × 2x2y × 2xy2 = 2 × 2 × xy ×x2y × xy2 = 4x4y4

(iv) Volume = a × 2b × 3c = 2 × 3 × a × b × c = 6abc

P5. Obtain the product of

(i) xy, yzzx

(ii) a, − a2a3

(iii) 2, 4y, 8y2, 16y3

(iv) a, 2b, 3c, 6abc

(v) m, − mnmnp

 Sol. (i) xy × yz × zx = x2y2z2

(ii)  a × (− a2) × a3 = − a6

(iii)  2 × 4× 8y2 × 16y= 2 × 4 × 8 × 16 × × y2 × y3 = 1024 y6

(iv) × 2b × 3c × 6abc = 2 × 3 × 6 × a × b × c × abc = 36a2b2c2

(v) × (− mn) × mnp = − m3n2p

EXERCISE-9.3

P1. Carry out the multiplication of the expressions in each of the following pairs.

(i) 4pq + r

(ii) aba − b

(iii) a + b, 7a2b2

(iv) a2 − 9, 4a

(v) pq + qr + rp, 0

Sol. (i) (4p) × (q + r) = (4p × q) + (4p × r) = 4pq + 4pr

(ii) (ab) × (a − b) = (ab × a) + [ab × (− b)] = a2b − ab2

(iii) (a + b) × (7a2 b2) = (a × 7a2b2) + (b × 7a2b2) = 7a3b2 + 7a2b3

(iv) (a2 − 9) × (4a) = (a2 × 4a) + (− 9) × (4a) = 4a3 − 36a

(v) (pq + qr + rp) × 0 = (pq × 0) + (qr × 0) + (rp × 0) = 0

P2. Complete the table

First expression

Second Expression

Product

(i)

a

b + c + d

(ii)

x + y − 5

xy

(iii)

p

6p− 7p + 5

(iv)

4p2q2

p− q2

(v)

a + b + c

abc

Sol. The table can be completed as follows.

First expression

Second Expression

Product

(i)

a

b + c + d

ab + ac + ad

(ii)

x + y − 5

xy

5x2y + 5xy2 − 25xy

(iii)

p

6p− 7p + 5

6p− 7p2 + 5p

(iv)

4p2q2

p− q2

4p4q2 − 4p2q4

(v)

a + b + c

abc

a2bc + ab2c + abc2

P3. Find the product.

(i)  (a2) × (2a22) × (4a26)

(ii) (23xy)×(910x2y2)

(iii) (103pq3)×(65p3q)

(iv) x × x2 × x3 × x4

Sol. (i) (a2) × (2a22) × (4a26) = 2 × 4 ×a2 × a22 × a26 = 8a50

(ii) 23xy×910x2y2 =23×910×x×y×x2×y2=35x3y3

(iii) 103pq3×65p3q =103×65×pq3×p3q=4p4q4

(iv) x × x2 × x3 × x4 = x10

P4. (a) Simplify 3x (4x −5) + 3 and find its values for

(i) x = 3,

(ii) x =12.

(b) a (a2 + a + 1) + 5 and find its values for

(i) a = 0,

(ii) a = 1,

(iii) a = − 1.

Sol. (a) 3x (4x − 5) + 3 = 12x2 − 15x + 3

(i) For x = 3, 12x2 − 15x + 3

= 12 (3)2 − 15(3) + 3

= 108 − 45 + 3

= 66

(ii) For x=12,12x215x+3=121221512+3=12×14152+3

=3152+3=6152

=12152=32

(b) a (a2 + a + 1) + 5 = a3 + a2 + a + 5

(i)  For a = 0, a3 + a2 + a + 5 = 0 + 0 + 0 + 5 = 5

(ii) For a = 1, a3 + a2 + a + 5 = (1)3 + (1)2 + 1 + 5 = 1 + 1 + 1 + 5 = 8

(iii) For a = −1, a3 + a2 + a + 5 = (−1)3 + (−1)2 + (−1) + 5 = − 1 + 1 − 1 + 5 = 4

P5. (a) Add : p (p − q), q (q ­­­− r) and r (r ­− p)

(b) Add : 2x (z − x − y) and 2y (z − y − x)

(c)  Subtract : 3l (l − 4m + 5n) from 4l (10n − 3m + 2l)

(d) Subtract : 3a (a + b + c) − 2b (a − b + c) from 4c (− a + b + c)

Sol. (a) First expression = p (p − q) = p2 − pq

Second expression = q (q ­­­− r) = q2 − qr

Third expression = r (r ­− p) = r2 − pr

Adding the three expressions, we obtain

p2pq+             q2qr+                          r2pqp2pq+q2qr+r2pq

Therefore, the sum of the given expressions is p2 + q2 + r2 − pq − qr − rp.

(b) First expression = 2x (z − x − y) = 2xz − 2x2 − 2xy

Second expression = 2y (z − y − x) = 2yz − 2y2 − 2yx

Adding the two expressions, we obtain

2xz2x22xy+              2yx+2yz2y22xz2x24xy+2yz2y2

Therefore, the sum of the given expressions is − 2x2 − 2y2 − 4xy + 2yz + 2zx.

(c) 3l (l − 4m + 5n) = 3l2 − 12lm + 15ln

4l (10n − 3m + 2l) = 40ln − 12lm + 8l2

Subtracting these expressions, we obtain

40ln12lm+8l215ln12lm+3l2     +     ++25ln         +5l2

Therefore, the result is 5l2 + 25ln.

(d) 3a (a + b + c) − 2b (a − b + c)

= 3a2 +3ab + 3ac − 2ba + 2b2 − 2bc

= 3a2 + 2bab + 3ac − 2bc

4c (− a + b + c) = − 4ac + 4bc + 4c2

Subtracting these expressions, we obtain

 4ac + 4bc + 4c2    3ac2bc   +3a2+2b2+ab   ()(+)    ()   ()    ()  ()  _________________________7ac+6bc+4c23a22b2ab

Therefore, the result is −3a2 −2b2 + 4c2 − ab + 6bc − 7ac

EXERCISE-9.4

P1. Multiply the binomials.

(i) (2x + 5) and (4x − 3)

(ii) (y − 8) and (3y − 4)

(iii) (2.5l − 0.5m) and (2.5l + 0.5m)

(iv) (a + 3b) and (x + 5)

(v)  (2pq + 3q2) and (3pq − 2q2)

(vi) (34a2+3b2) and 4(a223b2)

Sol. (i) (2x + 5) × (4x − 3)

= 2x × (4x − 3) + 5 × (4x − 3)

= 8x2 − 6x + 20x − 15

= 8x2 + 14x −15 (By adding like terms)

(ii) (y − 8) × (3y − 4)

= y × (3y − 4) − 8 × (3y − 4)

= 3y2 − 4y − 24y + 32

= 3y2 − 28y + 32 (By adding like terms)

(iii) (2.5l − 0.5m) × (2.5l + 0.5m)

= 2.5l × (2.5l + 0.5m) − 0.5m (2.5l + 0.5m)

= 6.25l2 + 1.25lm − 1.25lm − 0.25m2

= 6.25l2 − 0.25m2

(iv) (a + 3b) × (x + 5)

a × (x + 5) + 3b × (x + 5)

ax + 5a + 3bx + 15b

(v) (2pq + 3q2) × (3pq − 2q2)

= 2pq × (3pq − 2q2) + 3q2 × (3pq − 2q2)

= 6p2q2 − 4pq3 + 9pq3 − 6q4

= 6p2q2 + 5pq3 − 6q4

(vi) 34a2+3b2×4a223b2=34a2+3b2×4a283b2

=34a2×4a283b2+3b2×4a283b2 = 3a4 −2a2b2 + 12b2a2 − 8b4

= 3a4 + 10a2b2 − 8b4

P2. Find the product.

(i) (5 − 2x) (3 + x)

(ii) (x + 7y) (7x − y)

(iii) (a2 + b) (a + b2)

(iv) (p2 − q2) (2p + q)

Sol. (i) (5 − 2x) (3 + x) = 5 (3 + x) − 2x (3 + x)

= 15 + 5x − 6x − 2x2

= 15 − x − 2x2

(ii) (x + 7y) (7x − y)

x (7x − y) + 7y (7x − y)

= 7x2 − xy + 49xy − 7y2

= 7x2 + 48xy − 7y2

(iii) (a2 + b) (a + b2)

a2 (a + b2) + b (a + b2)

a3 + a2b2 + ab + b3

(iv)  (p2 − q2) (2p + q)

p2 (2p + q) − q2 (2p + q)

= 2p3 + p2q − 2pq2 − q3

P3. Simplify.

(i) (x2 − 5) (x + 5) + 25

(ii) (a2 + 5) (b3 + 3) + 5

(iii) (t + s2) (t2 − s)

(iv) (a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)

(v) (x + y) (2x + y) + (x + 2y) (x − y)

(vi) (x + y) (x2 − xy + y2)

(vii) (1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y

(viii) (a + b + c) (a + b − c)

Sol. (i) (x2 − 5) (x + 5) + 25

x2 (x + 5) − 5 (x + 5) + 25

x3 + 5x2 − 5x − 25 + 25

x3 + 5x2 − 5x

(ii) (a2 + 5) (b3 + 3) + 5

a2 (b3 + 3) + 5 (b3 + 3) + 5

a2b+ 3a2 + 5b3 + 15 + 5

= a2b+ 3a2 + 5b3 + 20

(iii) (t + s2) (t2 − s)

t (t− s) + s2 (t2 − s)

t3 − st + s2t− s3

(iv) (a + b) (c − d) + (a − b) (c + d) + 2 (ac + bd)

a (c − d) + b (c − d) + a (c + d) − b (c + d) + 2 (ac + bd)

ac − ad bc − bd + ac + ad − bc − bd + 2ac + 2bd

= (ac + ac + 2ac) + (ad − ad) + (bc − bc) + (2bd − bd − bd)

= 4ac

(v) (x + y) (2x + y) + (x + 2y) (x − y)

x (2x + y) + y (2x + y) + x (x − y) + 2y (x − y)

= 2x2 + xy + 2xy + y2 + x2 − xy + 2xy − 2y2

= (2x2 + x2) + (y2 − 2y2) + (xy + 2xy − xy + 2xy)

= 3x2 − y2 + 4xy

(vi) (x + y) (x2 − xy + y2)

x (x2 − xy + y2) + y (x2 − xy + y2)

x3 − x2y + xy2 + x2y − xy2 + y3

x3 + y3 + (xy2 − xy2) + (x2y − x2y)

x3 + y3

(vii) (1.5x − 4y) (1.5x + 4y + 3) − 4.5x + 12y

= 1.5x (1.5x + 4y + 3) − 4y 

(1.5x + 4y + 3) − 4.5x + 12y

= 2.25 x2 + 6xy + 4.5x − 6xy − 16y2 − 12y − 4.5x + 12y

= 2.25 x2 + (6xy − 6xy) + (4.5x − 4.5x) − 16y2 + (12y − 12y) = 2.25x2 − 16y2

(viii) (a + b + c) (a + b − c)

a (a + b − c) + b (a + b − c) + c (a + b − c)

a2 + ab − ac + ab + b2 − bc + ca + bc − c2

a2 + b2 − c2 + (ab + ab) + (bc − bc) + (ca − ca)

a2 + b2 − c2 + 2ab

EXERCISE-9.5

P1. Use a suitable identity to get each of the following products.

(i) (x + 3) (x + 3) (ii) (2y + 5) (2y + 5)

(iii) (2a ­− 7) (2a − 7)

(iv) (3a12)(3a12)

(v) (1.1m − 0.4) (1.1 m + 0.4)

(vi) (a2 + b2) (− a2 + b2)

(vii) (6x − 7) (6x + 7)

(viii) (− a + c) (− a + c)

(ix) (x2+3y4)(x2+3y4)

(x) (7a − 9b) (7a − 9b)

Sol. The products will be as follows.

 (i) (x + 3) (x + 3) = (x + 3)2

= (x)2 + 2(x) (3) + (3)2 [(a + b)2 

a2 + 2ab + b2]

x2 + 6x + 9

(ii) (2y + 5) (2y + 5) = (2y + 5)2

= (2y)2 + 2(2y) (5) + (5)2

= 4y2 + 20y + 25

(iii) (2a ­− 7) (2a − 7) = (2a − 7)2

= (2a)2 − 2(2a) (7) + (7)2 

[(a − b)2 = a2 − 2ab + b2]

= 4a2 − 28a + 49

(iv)  3a123a12=3a122 

=(3a)22(3a)12+122

[(a − b)2 = a2 − 2ab + b2]

=9a23a+14

(v) (1.1m − 0.4) (1.1 m + 0.4)

= (1.1m)− (0.4)2

[(a + b) (a − b) = a2 − b2]

= 1.21m2 − 0.16

(vi) (a2 + b2) (− a2 + b2) = (b2 + a2) (b2 − a2)

= (b2)2 − (a2)2 [(a + b) (a − b) = a2 − b2]

b4 − a4

(vii) (6x − 7) (6x + 7) = (6x)2 − (7)2 [(a + b) (a − b) = a2 − b2] = 36x2 −49

(viii) (− a + c) (− a + c) = (− a + c)2

= (− a)2 + 2(− a) (c) + (c)2 [(a + b)2 

a2 + 2ab + b2]

a2 − 2ac + c2

(ix) x2+3y4x2+3y4=x2+3y42 

=x22+2x23y4+3y42

[(a + b)2 = a2 + 2ab + b2]

=x22+3xy4+9y216

(x) (7a − 9b) (7a − 9b) = (7a − 9b)2

= (7a)2 − 2(7a)(9b) + (9b)2 [(− b)

a2 − 2ab b2]

= 49a2 − 126ab + 81b2

P2. Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the following products.

(i) (x + 3) (x + 7)

(ii) (4x +5) (4x + 1)

(iii) (4x − 5) (4− 1)

(iv) (4x + 5) (4− 1)

(v) (2x +5y) (2x + 3y)

(vi) (2a2 +9) (2a2 + 5)

(vii) (xyz − 4) (xyz − 2)

Sol. The products will be as follows.

(i) (x + 3) (x + 7) = x2 + (3 + 7) x + (3) (7) = x+ 10x + 21

(ii) (4x + 5) (4x + 1) = (4x)2 + (5 + 1) (4x) + (5) (1) = 16x2 + 24x + 5

(iii) (4x  – 5) (4x  – 1) = (4x)2+[(– 5) + (–1)] (4x) + (– 5) (– 1) = 16x2 − 24x + 5

(iv) (4x + 5) (4x  – 1) = (4x)2 + [(5) + (–1)] (4x) + (5) (– 1) = 16x2 + 16x − 5

(v) (2x +5y) (2x + 3y) = (2x)2 + (5y + 3y) (2x) + (5y) (3y) = 4x2 + 16xy + 15y2

(vi) (2a2 +9) (2a2 + 5) = (2a2)2 + (9 + 5) (2a2) + (9) (5) = 4a4 + 28a2 + 45

(vii) (xyz − 4) (xyz − 2) = (xyz)2+[(−4) + (−2)](xyz) + (−4)(− 2) = x2y2z2 − 6xyz + 8

P3. Find the following squares by suing the identities.

(i) (b − 7)2

(ii) (xy + 3z)2

(iii) (6x2 − 5y)2

(iv) (23m+32n)2      

(v) (0.4p − 0.5q)2

(vi) (2xy + 5y)2

Sol. (i) (b − 7)2 = (b)2 − 2(b) (7) + (7)2

[(a − b)2 = a2 − 2ab + b2] = b2 − 14b + 49

(ii) (xy + 3z)2 = (xy)2 + 2(xy) (3z) + (3z)2 [(a + b)2 = a2 + 2ab + b2]

x2y2 + 6xyz + 9z2

(iii) (6x2 − 5y)2 = (6x2)2 − 2(6x2) (5y) + (5y)2 [(a − b)2 = a2 − 2ab + b2]

= 36x4 − 60x2y + 25y2

(iv) =23m+32n2

=23 m2+223 m32n+32n2

 [(a + b)2 = a2 + 2ab + b2]

=49 m2+2mn+94n2

(v) (0.4p − 0.5q)2 = (0.4p)2 − 2 (0.4p) (0.5q) + (0.5q)2

[(a − b)2 = a2 − 2ab + b2] = 0.16p− 0.4pq + 0.25q2

(vi) (2xy + 5y)2 = (2xy)2 + 2(2xy) (5y) + (5y)2

[(a + b)= a2 + 2ab + b2] = 4x2y2 + 20xy2 + 25y2

P4. Simplify.

(i) (a2 − b2)2 (ii) (2x +5)2 − (2x − 5)2

(iii) (7m − 8n)2 + (7m + 8n)2

(iv) (4m + 5n)2 + (5m + 4n)2

(v) (2.5p − 1.5q)2 − (1.5p − 2.5q)2

(vi) (ab + bc)2 − 2ab2c

(vii) (m2 − n2m)2 + 2m3n2

Sol. (i) (a2 − b2)2  = (a2)2 − 2(a2) (b2) + (b2)2 [(a − b)2 

= [a2 − 2ab + b2 ] = a4 − 2a2b2 + b4

(ii) (2x +5)2 − (2x − 5)2  = (2x)2 + 2(2x) (5) + (5)2 − [(2x)− 2(2x) (5) + (5)2]

[(a − b)2 = a2 − 2ab + b2]

[(a + b)2 = a2 + 2ab + b2]

= 4x2 + 20x + 25 − [4x2 − 20x + 25]

= 4x2 + 20x + 25 − 4x2 + 20x − 25 = 40x

(iii) (7m − 8n)2 + (7m + 8n)2

= (7m)2 − 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2

[(a − b)2 = a2 − 2ab + b2 and (a + b)2 = a2 + 2ab + b2]

= 49m2 − 112mn + 64n2 + 49m2 + 112mn + 64n2

= 98m2 + 128n2

(iv) (4m + 5n)2 + (5m + 4n)2

= (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)2

= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2

= 41m2 + 80mn + 41n2

(v) (2.5p − 1.5q)2 − (1.5p − 2.5q)2

= (2.5p)2 − 2(2.5p) (1.5q) + (1.5q)2 − [(1.5p)2 − 2(1.5p)(2.5q) + (2.5q)2]

[(a − b)2 = a2 − 2ab + b2 ]

= 6.25p2 − 7.5pq + 2.25q2 − [2.25p2 − 7.5pq + 6.25q2]

= 6.25p2 − 7.5pq + 2.25q2 − 2.25p2 + 7.5pq − 6.25q2] = 4p2 − 4q2

(vi) (ab + bc)2 − 2ab2c

= (ab)2 + 2(ab)(bc) + (bc)2 − 2ab2c [(a + b)2 = a2 + 2ab + b2 ]

a2b2 + 2ab2c + b2c2 − 2ab2c

a2b2 + b2c2

(vii) (m2 − n2m)2 + 2m3n2

= (m2)2 − 2(m2) (n2m) + (n2m)2 + 2m3n2 [(a − b)2 = a2 − 2ab + b2 ]

m4 − 2m3n2 + n4m2 + 2m3n2

m4 + n4m2

P5.  Show that

(i) (3x + 7)2 − 84x = (3x − 7)2

(ii) (9p − 5q)2 + 180pq = (9p + 5q)2

(iii) (43m34n)2+2mn=169m2+916n2 

(iv) (4pq + 3q)− (4pq − 3q)2 = 48pq2

(v) (a − b) (a + b) + (b − c) (b + c) + (c − a) (c + a) = 0

Sol. (i) L.H.S = (3x + 7)2 − 84x

= (3x)2 + 2(3x)(7) + (7)2 − 84x

= 9x2 + 42x + 49 − 84x

= 9x2 − 42x + 49

R.H.S = (3x − 7)2 

= (3x)2 − 2(3x)(7) +(7)2

= 9x− 42x + 49

L.H.S = R.H.S

(ii) L.H.S = (9p − 5q)2 + 180pq

= (9p)2 − 2(9p)(5q) + (5q)2 − 180pq

= 81p2 − 90pq + 25q2 + 180pq

= 81p2 + 90pq + 25q2

R.H.S = (9p + 5q)2

= (9p)2 + 2(9p)(5q) + (5q)2

= 81p2 + 90pq + 25q2

L.H.S = R.H.S

(iii) L.H.S = 43m34n2+2mn

=43 m2243 m34n+34n2+2mn

=169 m22mn+916n2+2mn

=169 m2+916n2=R.H.S.

(iv) L.H.S = (4pq + 3q)− (4pq − 3q)2

= (4pq)2 + 2(4pq)(3q) + (3q)2 − [(4pq)2 − 2(4pq) (3q) + (3q)2]

= 16p2q2 + 24pq2 + 9q2 − [16p2q2 − 24pq2 + 9q2]

= 16p2q2 + 24pq2 + 9q2 −16p2q2 + 24pq2 − 9q2

= 48pq2 = R.H.S

(v) L.H.S = (a − b) (a + b) + (b − c) (b + c) + (c − a) (c + a)

= (a2 − b2) + (b2 − c2) + (c2 − a2) = 0

= R.H.S.

P6. Using identities, evaluate.

(i) 712                    (ii) 992

(iii) 1022             (iv) 9982

(v) (5.2)2             (vi) 297 × 303

(vii) 78 × 82    (viii) 8.92

(ix) 1.05 × 9.5

Sol. (i) 712 = (70 + 1)2 = (70)2 + 2(70) (1) + (1)2

[(a + b)2 = a2 + 2ab + b2 ] = 4900 + 140 + 1 = 5041

(ii) 992 = (100 − 1)= (100)2 − 2(100) (1) + (1)2

[(a − b)2 = a2 − 2ab + b2 ] = 10000 − 200 + 1 = 9801

(iii) 1022 = (100 + 2)2 = (100)2 + 2(100)(2) + (2)2

[(a + b)2 = a2 + 2ab + b2 ] = 10000 + 400 + 4 = 10404

(iv) 9982 = (1000 − 2)2 = (1000)2 − 2(1000)(2) + (2)2

[(a − b)2 = a2 − 2ab + b2 ] = 1000000 − 4000 + 4 = 996004

(v) (5.2)2 = (5.0 + 0.2)2 = (5.0)2 + 2(5.0) (0.2) + (0.2)2

[(a + b)2 = a2 + 2ab + b2 ] = 25 + 2 + 0.04 = 27.04

(vi) 297 × 303 = (300 − 3) × (300 + 3) = (300)2 − (3)2 [(a + b) (a − b)

= [a2 − b2] = 90000 − 9 = 89991

(vii) 78 × 82 = (80 − 2) (80 + 2)

= (80)2 − (2)2 [(a + b) (a − b) = a2 − b2] = 6400 − 4 = 6396

(viii) 8.92 = (9.0 − 0.1)2 = (9.0)2 − 2(9.0) (0.1) + (0.1)2

[(a − b)2 = a2 − 2ab + b2 ] = 81 − 1.8 + 0.01 = 79.21

(ix) 1.05 × 9.5 = 1.05 × 0.95 × 10 = (1 + 0.05) (1− 0.05) ×10

= [(1)2 − (0.05)2] × 10 = [1 − 0.0025] × 10 [(a + b) (a − b)

a2 − b2] = 0.9975 × 10 = 9.975

P7. Using a− b2 = (a + b) (a − b), find

(i) 512 − 492

(ii) (1.02)2 − (0.98)2

(iii) 1532 − 1472

(iv) 12.12 − 7.92

Sol. (i) 512 − 492 = (51 + 49) (51 − 49) = (100) (2) = 200

(ii) (1.02)2 − (0.98)2  = (1.02 + 0.98) (1.02 ­− 0.98)  = (2) (0.04) = 0.08

(iii) 1532 − 1472 = (153 + 147) (153 − 147) = (300) (6) = 1800

(iv) 12.12 − 7.92 = (12.1 + 7.9) (12.1 − 7.9) = (20.0) (4.2) = 84

P8. Using (a) (b) = x2 + (a + bx + ab, find

(i) 103 × 104

(ii) 5.1 × 5.2

(iii) 103 × 98

(iv) 9.7 × 9.8

Sol. (i) 103 × 104 = (100 + 3) (100 + 4)

= (100)2 + (3 + 4) (100) + (3) (4)

= 10000 + 700 + 12 = 10712

(ii) 5.1 × 5.2 = (5 + 0.1) (5 + 0.2)

= (5)2 + (0.1 + 0.2) (5) + (0.1) (0.2)

= 25 + 1.5 + 0.02 = 26.52

(iii) 103 × 98 = (100 + 3) (100 − 2)

= (100)2 + [3 + (− 2)] (100) + (3) (− 2)

= 10000 + 100 − 6

= 10094

(iv) 9.7 × 9.8 = (10 − 0.3) (10 − 0.2)

= (10)2 + [(− 0.3) + (− 0.2)] (10) + (− 0.3) (− 0.2)

= 100 + (− 0.5)10 + 0.06 = 100.06 − 5 = 95.06

Was this article helpful to you? Yes No