EXERCISE-12.1
P1. Get the algebraic expressions in the following cases using variables, constants and arithmetic operations.
(i) Subtraction of z from y.
(ii) One-half of the sum of numbers x and y.
(iii) The number z multiplied by itself.
(iv) One-fourth of the product of numbers p and q.
(v) Numbers x and y both squared and added.
(vi) Number 5 added to three times the product of number m and n. (vii) Product of numbers y and z subtracted from 10.
(viii) Sum of numbers a and b subtracted from their product.
Sol. (i) y − z
(ii)
(iii) z2
(iv)
(v) x2 + y2
(vi) 5 + 3 (mn)
(vii) 10 − yz
(viii) ab − (a + b)
P2. (i)Identify the terms and their factors in the following expressions Show the terms and factors by tree diagrams.
(a) x − 3
(b) 1 + x + x2
(c) y − y3
(d)
(e) − ab + 2b2 − 3a2
(ii) Identify terms and factors in the expressions given below:
(a) − 4x + 5
(b) − 4x + 5y
(c) 5y + 3y2
(d) xy + 2x2y2
(e) pq + q
(f) 1.2 ab − 2.4 b + 3.6 a
(g)
(h) 0.1p2 + 0.2 q2
Sol. (i) (a)
(b)
(c)
(d)
(e)
(ii)
Row |
Expression |
Terms |
Factors |
(a) |
− 4x + 5 |
− 4x 5 |
− 4, x 5 |
(b) |
− 4x + 5y |
− 4x 5y |
− 4, x 5, y |
(c) |
5y + 3y2 |
5y 3y2 |
5, y 3, y, y |
(d) |
xy + 2x2y2 |
xy 2x2y2 |
x, y 2, x, x, y, y |
(e) |
pq + q |
pq q |
p, q q |
(f) |
1.2ab − 2.4b + 3.6a |
1.2ab − 2.4b 3.6a |
1.2, a, b − 2.4, b 3.6, a |
(g) |
, x, |
||
(h) |
0.1p2 + 0.2q2 |
0.1p2 0.2q2 |
0.1, p, p 0.2, q, q |
P3. Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i) 5 − 3t2
(ii) 1 + t + t2 + t3
(iii) x + 2xy+ 3y
(iv) 100m + 1000n
(v) − p2q2 + 7pq
(vi) 1.2a + 0.8b
(vii) 3.14 r2
(viii) 2 (l + b)
(ix) 0.1y + 0.01 y2
Sol.
Row |
Expression |
Terms |
Coefficients |
(i) |
5 − 3t2 |
− 3t2 |
− 3 |
(ii) |
1 + t + t2 + t3 |
t t2 t3 |
1 1 1 |
(iii) |
x + 2xy + 3y |
x 2xy 3y |
1 2 3 |
(iv) |
100m + 1000n |
100m 1000n |
100 1000 |
(v) |
− p2q2 + 7pq |
− p2q2 7pq |
− 1 7 |
(vi) |
1.2a +0.8b |
1.2a 0.8b |
1.2 0.8 |
(vii) |
3.14 r2 |
3.14 r2 |
3.14 |
(viii) |
2(l + b) |
2l 2b |
2 2 |
(ix) |
0.1y + 0.01y2 |
0.1y 0.01y2 |
0.1 0.01 |
P4. (a) Identify terms which contain x and give the coefficient of x.
(i) y2x + y
(ii) 13y2− 8yx
(iii) x + y + 2
(iv) 5 + z + zx
(v) 1 + x+ xy
(vi) 12xy2 + 25
(vii) 7x + xy2
(b) Identify terms which contain y2 and give the coefficient of y2.
(i) 8 − xy2
(ii) 5y2 + 7x
(iii) 2x2y −15xy2 + 7y2
Sol. (a)
Row |
Expression |
Terms with x |
Coefficient of x |
(i) |
y2x + y |
y2x |
y2 |
(ii) |
13y2 − 8yx |
− 8yx |
−8y |
(iii) |
x + y + 2 |
x |
1 |
(iv) |
5 + z + zx |
zx |
z |
(v) |
1 + x + xy |
x xy |
1 y |
(vi) |
12xy2 + 25 |
12xy2 |
12y2 |
(vii) |
7x+ xy2 |
7x |
7 |
(b)
Row |
Expression |
Terms with y2 |
Coefficient of y2 |
(i) |
8 − xy2 |
−xy2 |
− x |
(ii) |
5y2 + 7x |
5y2 |
5 |
(iii) |
2x2y + 7y2 −15xy2 |
7y2 −15xy2 |
7 −15x |
P5. Classify into monomials, binomials and trinomials.
(i) 4y − 7z
(ii) y2
(iii) x + y − xy
(iv) 100
(v) ab − a − b
(vi) 5 − 3t
(vii) 4p2q − 4pq2
(viii) 7mn
(ix) z2 − 3z + 8
(x) a2 + b2
(xi) z2 + z
(xii) 1 + x + x2
Sol. The monomials, binomials, and trinomials have 1, 2, and 3 unlike terms in it respectively.
(i) 4y − 7z Binomial
(ii) y2 Monomial
(iii) x + y – xy Trinomial
(iv) 100 Monomial
(v) ab − a – b Trinomial
(vi) 5 − 3t Binomial
(vii) 4p2q − 4pq2 Binomial
(viii) 7mn Monomial
(ix) z2 − 3z + 8 Trinomial
(x) a2 + b2 Binomial
(xi) z2 + z Binomial
(xii) 1 + x + x2 Trinomial
P6. State whether a given pair of terms is of like or unlike terms.
(i) 1, 100
(ii)
(iii) − 29x, − 29y
(iv) 14xy, 42yx
(v) 4m2p, 4mp2
(vi) 12xz, 12 x2z2
Sol. The terms which have the same algebraic factors are called like terms. However, when the terms have different algebraic factors, these are called unlike terms.
(i) 1, 100 Like
(ii) − 7x, x Like
(iii) −29x, −29y Unlike
(iv) 14xy, 42yx Like
(v) 4m2p, 4mp2 Unlike
(vi) 12xz, 12x2z2 Unlike
P7. Identify like terms in the following:
(a) −xy2, − 4yx2, 8x2, 2xy2, 7y, − 11x2, − 100x, −11yx, 20x2y, −6x2, y, 2xy,3x
(b) 10pq, 7p, 8q, − p2q2, − 7qp, − 100q, − 23, 12q2p2, − 5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2
Sol. (a) −xy2, 2xy2
−4yx2, 20x2y
8x2, −11x2, −6x2
7y, y
−100x, 3x
−11xy, 2xy
(b) 10pq, −7qp, 78qp
7p, 2405p
8q, −100q
−p2q2, 12p2q2
−23, 41
−5p2, 701p2
13p2q, qp2
EXERCISE-12.2
P1. Simplify combining like terms:
(i) 21b − 32 + 7b − 20b
(ii) − z2 + 13z2 − 5z + 7z3 − 15z
(iii) p − (p − q) − q − (q − p)
(iv) 3a−2b−ab − (a − b + ab) + 3ab + b − a
(v) 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
(vi) (3 y2 + 5y − 4) − (8y − y2 − 4)
Sol. (i) 21b − 32 + 7b − 20b = 21b + 7b − 20b − 32
= b (21 + 7 − 20) −32
= 8b − 32
(ii) − z2 + 13z2 − 5z + 7z3 − 15z = 7z3 − z2 + 13z2 − 5z − 15z
= 7z3 + z2 (−1 + 13) + z (−5 − 15)
= 7z3 + 12z2 − 20z
(iii) p − (p − q) − q − (q − p)
= p − p + q − q − q + p
= p − q
(iv) 3a − 2b − ab − (a − b + ab) + 3ba + b − a
= 3a − 2b − ab − a + b − ab + 3ab+b− a
= 3a − a − a − 2b + b + b –ab −ab+ 3ab
= a (3 − 1 − 1) + b (− 2 + 1 + 1) + ab (−1 −1 + 3)
= a + ab
(v) 5x2y − 5x2 + 3yx2 − 3y2 + x2 − y2 + 8xy2 − 3y2
= 5x2y + 3yx2 − 5x2 + x2 − 3y2 − y2 − 3y2 + 8xy2
= x2y (5 + 3) + x2 (−5 + 1)+ y2(−3−1− 3) + 8xy2
= 8x2y − 4x2 − 7y2 + 8xy2
(vi) (3y2 + 5y − 4) − (8y − y2 − 4)
= 3y2 + 5y − 4 − 8y + y2 + 4
= 3y2 + y2 + 5y − 8y − 4 + 4
= y2 (3 + 1) + y (5 − 8) + 4 (1 − 1)
= 4y2 − 3y
P2. Add:
(i) 3mn, − 5mn, 8mn, −4mn
(ii) t − 8tz, 3tz − z, z − t
(iii) − 7mn+5, 12mn+2, 9mn − 8, − 2mn − 3
(iv) a + b − 3, b − a + 3, a − b + 3
(v) 14x + 10y − 12xy − 13, 18 − 7x − 10y + 8xy, 4xy
(vi) 5m − 7n, 3n − 4m + 2, 2m − 3mn − 5
(vii) 4x2y, − 3xy2, − 5xy2, 5x2y
(viii) 3p2q2 − 4pq + 5, − 10p2q2, 15 + 9pq + 7p2q2
(ix) ab − 4a, 4b − ab, 4a − 4b
(x) x2 − y2 − 1 , y2 − 1 − x2, 1− x2 − y2
Sol. (i) 3mn + (−5mn) + 8mn + (−4mn) = mn (3 − 5 + 8 − 4) = 2mn
(ii) (t − 8tz) + (3tz − z) + (z − t)
= t − 8tz + 3tz − z + z − t
= t − t − 8tz + 3tz − z + z
= t (1 − 1) + tz (− 8 + 3) + z (− 1 + 1)
= −5tz
(iii) (− 7mn + 5) + (12mn + 2) + (9mn − 8) + (− 2mn − 3)
= − 7mn + 5 + 12mn + 2 + 9mn − 8 − 2mn − 3
= − 7mn + 12mn + 9mn − 2mn + 5 + 2 − 8 − 3
= mn (− 7 + 12 + 9 − 2) + (5 + 2 − 8 − 3)
= 12mn − 4
(iv) (a + b − 3) + (b − a + 3) + (a − b + 3)
= a + b − 3 + b − a + 3 + a − b + 3
= a − a + a + b + b − b − 3 + 3 + 3
= a (1 − 1 + 1) + b (1 + 1 − 1) + 3 (− 1 + 1 + 1)
= a + b + 3
(v) (14x + 10y − 12xy − 13) + (18 − 7x − 10y + 8yx) + 4xy
= 14x + 10y − 12xy − 13 + 18 − 7x − 10y + 8yx + 4xy
= 14x − 7x + 10y − 10y − 12xy + 8yx + 4xy − 13 + 18
= x (14 − 7) + y (10 − 10) + xy (− 12 + 8 + 4) − 13 + 18
= 7x + 5
(vi) (5m − 7n) + (3n − 4m + 2) + (2m − 3mn − 5)
= 5m − 7n +3n−4m + 2 + 2m − 3mn − 5
= 5m − 4m +2m−7n + 3n − 3mn + 2 − 5
= m (5 − 4 + 2) + n (− 7 + 3) −3mn + 2 − 5
= 3m − 4n − 3mn − 3
(vii) 4x2 y − 3xy2 − 5xy2 + 5x2y = 4x2 y + 5x2y − 3xy2 − 5xy2
= x2 y (4 + 5) + xy2 (− 3 − 5)
= 9x2y − 8xy2
(viii) (3p2q2 − 4pq + 5) + (−10 p2q2) + (15 + 9pq + 7p2q2)
= 3p2q2 − 4pq + 5 − 10 p2q2 + 15 + 9pq + 7p2q2
= 3p2q2 − 10 p2q2 + 7p2q2 − 4pq + 9pq + 5 + 15
= p2q2 (3 − 10 + 7) + pq (− 4 + 9) + 5 + 15
= 5pq + 20
(ix) (ab − 4a) + (4b − ab) + (4a − 4b)
= ab − 4a + 4b − ab + 4a − 4b
= ab − ab − 4a + 4a + 4b − 4b
= ab (1 − 1) + a (− 4 + 4) + b(4 − 4)
= 0
(x) (x2 − y2 − 1) + (y2 − 1 − x2)+(1 − x2 − y2)
= x2 − y2 − 1 + y2 − 1 − x2 + 1 − x2 − y2
= x2 − x2 − x2 − y2 + y2 − y2 − 1 − 1 + 1
= x2(1 − 1 − 1) + y2 (−1 + 1 − 1) + (− 1 − 1 + 1)
= − x2 − y2 − 1
P3. Subtract:
(i) − 5y2 from y2
(ii) 6xy from − 12xy
(iii) (a − b) from (a + b)
(iv) a (b − 5) from b (5 − a)
(v) − m2 + 5mn from 4m2 − 3mn + 8
(vi) − x2 + 10x − 5 from 5x − 10
(vii) 5a2 − 7ab + 5b2 from 3ab − 2a2 −2b2
(viii) 4pq − 5q2 − 3p2 from 5p2 + 3q2 − pq
Sol. (i) y2 − (−5y2) = y2 + 5y2 = 6y2
(ii) − 12xy − (6xy) = −18xy
(iii) (a + b) − (a − b) = a + b − a + b = 2b
(iv) b (5 − a) − a (b − 5) = 5b − ab − ab + 5a = 5a + 5b − 2ab
(v) (4m2 − 3mn + 8) − (− m2 + 5mn) = 4m2 − 3mn + 8 + m2 − 5 mn
= 4m2 + m2 − 3mn − 5 mn + 8
= 5m2 − 8mn + 8
(vi) (5x − 10) − (− x2 + 10x − 5) = 5x − 10 + x2 − 10x + 5
= x2 + 5x − 10x − 10 + 5
= x2 − 5x − 5
(vii) (3ab − 2a2 − 2b2) − (5a2− 7ab + 5b2)
= 3ab − 2a2 − 2b2 − 5a2 + 7ab − 5 b2
= 3ab + 7ab − 2a2 − 5a2 − 2b2 − 5 b2
= 10ab − 7a2 − 7b2
(viii) 4pq − 5q2 − 3p2 from 5p2 + 3q2 − pq
(5p2 + 3q2 − pq) − (4pq − 5q2− 3p2)
= 5p2 + 3q2 − pq − 4pq + 5q2 + 3p2
= 5p2 + 3p2 + 3q2 + 5q2 − pq − 4pq
= 8p2 + 8q2 − 5pq
P4. (a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?
(b) What should be subtracted from 2a + 8b + 10 to get − 3a + 7b + 16?
Sol. (a) Let a be the required term.
a + (x2 + y2 + xy) = 2x2 + 3xy
a = 2x2 + 3xy − (x2 + y2 + xy)
a = 2x2 + 3xy − x2 − y2 − xy
a = 2x2 − x2 − y2 + 3xy − xy = x2 − y2 + 2xy
(b) Let p be the required term.
(2a + 8b + 10) − p = − 3a + 7b + 16
p = 2a + 8b + 10 − (− 3a + 7b + 16)
= 2a + 8b + 10 + 3a − 7b − 16
= 2a + 3a + 8b − 7b + 10− 16
= 5a + b − 6
P5. What should be taken away from 3x2 − 4y2 + 5xy + 20 to obtain − x2 − y2 + 6xy + 20?
Sol. Let p be the required term.
(3x2 − 4y2 + 5xy + 20) − p = − x2 − y2 + 6xy + 20
p = (3x2 − 4y2 + 5xy + 20) − (− x2 − y2 + 6xy + 20)
= 3x2 − 4y2 + 5xy +20+x2+ y2 − 6xy − 20
= 3x2 + x2 − 4y2 + y2 + 5xy−6xy+20 − 20
= 4x2 − 3y2 − xy
P6. (a) From the sum of 3x − y + 11 and − y − 11, subtract 3x − y − 11.
(b) From the sum of 4 + 3x and 5 − 4x + 2x2, subtract the sum of 3x2 − 5x and − x2 + 2x + 5.
Sol. (a) (3x − y + 11) + (− y − 11)
= 3x − y + 11 − y − 11
= 3x − y − y + 11 − 11
= 3x − 2y
(3x − 2y) − (3x − y − 11)
= 3x − 2y − 3x + y + 11
= 3x − 3x − 2y + y + 11
= − y + 11
(b) (4 + 3x) + (5 − 4x + 2x2) = 4 + 3x + 5 − 4x + 2x2
= 3x − 4x + 2x2 + 4 + 5
= − x + 2x2 + 9
(3x2 − 5x) + (− x2 + 2x + 5) = 3x2 − 5x − x2 + 2x + 5
= 3x2 − x2 − 5x + 2x + 5
= 2x2 − 3x + 5
(− x + 2x2 + 9) − (2x2 − 3x + 5)
= − x + 2x2 + 9 − 2x2 + 3x − 5
= − x + 3x + 2x2 − 2x2 + 9 − 5
= 2x + 4
EXERCISE-12.3
P1. If m = 2, find the value of:
(i) m − 2
(ii) 3m − 5
(iii) 9 − 5m
(iv) 3m2 − 2m − 7
(v)
Sol. (i) m − 2 = 2 − 2 = 0
(ii) 3m − 5 = (3 × 2) − 5 = 6 − 5 = 1
(iii) 9 − 5m = 9 − (5 × 2) = 9 −10 = −1
(iv) 3m2 − 2m − 7 = 3 × (2 × 2) − (2 × 2) − 7 = 12 − 4 − 7 = 1
(v)
P2. If p = −2, find the value of:
(i) 4p + 7
(ii) −3p2 + 4p + 7
(iii) −2p3 − 3p2 + 4p + 7
Sol. (i) 4p + 7 = 4 × (−2) + 7 = − 8 + 7 = −1
(ii) − 3p2 + 4p + 7 = −3 (−2) × (−2) + 4 × (−2) + 7 = − 12 − 8 + 7 = −13
(iii) −2p3 − 3p2 + 4p + 7
= −2 (−2) × (−2) × (−2) − 3 (−2) × (−2) + 4 × (−2) + 7
= 16 − 12 − 8 + 7 = 3
P3. Find the value of the following expressions, when x = − 1:
(i) 2x − 7
(ii) − x + 2
(iii) x2 + 2x + 1
(iv) 2x2 − x − 2
Sol. (i) 2x − 7 = 2 × (−1) − 7 = −9
(ii) − x + 2 = − (−1) + 2 = 1 + 2 = 3
(iii) x2 + 2x + 1 = (−1) × (−1) + 2 × (−1) + 1 = 1 − 2 + 1 = 0
(iv) 2x2 − x − 2 = 2 (−1) × (−1) − (−1) − 2 = 2 + 1 − 2 = 1
P4. If a = 2, b = − 2, find the value of:
(i) a2 + b2
(ii) a2 + ab + b2
(iii) a2 − b2
Sol. (i) a2 + b2 = (2)2 + (−2)2 = 4 + 4 = 8
(ii) a2 + ab + b2 = (2 × 2) + 2 × (−2) + (−2) × (−2) = 4 − 4 + 4 = 4
(iii) a2 − b2 = (2)2 − (−2)2 = 4 − 4 = 0
P5. When a = 0, b = − 1, find the value of the given expressions:
(i) 2a + 2b
(ii) 2a2 + b2 + 1
(iii) 2a2 b + 2ab2 + ab
(iv) a2 + ab + 2
Sol. (i) 2a + 2b = 2 × (0) + 2 × (−1) = 0 − 2 = −2
(ii) 2a2 + b2 + 1 = 2 × (0)2 + (−1) × (−1) + 1 = 0 + 1 + 1 = 2
(iii) 2a2b + 2ab2 + ab = 2 × (0)2 × (−1) + 2 × (0) × (−1) × (−1) + 0 × (−1) = 0 + 0 + 0 = 0
(iv) a2 + ab + 2 = (0)2 + 0 × (−1) + 2 = 0 + 0 + 2 = 2
P6. Simplify the expressions and find the value if x is equal to 2
(i) x + 7 + 4 (x − 5)
(ii) 3 (x + 2) + 5x − 7
(iii) 6x + 5 (x − 2)
(iv) 4 (2x −1) + 3x + 11
Sol. (i) x + 7 + 4 (x − 5) = x + 7 + 4x − 20
= x + 4x + 7 − 20
= 5x − 13
= (5 × 2) − 13
= 10 − 13 = −3
(ii) 3 (x + 2) + 5x − 7 = 3x + 6 + 5x − 7
= 3x + 5x + 6 − 7 = 8x − 1
= (8 × 2) − 1 = 16 − 1 =15
(iii) 6x + 5 (x − 2) = 6x + 5x − 10
= 11x − 10
= (11 × 2) − 10 = 22 − 10 = 12
(iv) 4 (2x − 1) + 3x + 11 = 8x − 4 + 3x + 11
= 11x + 7
= (11 × 2) + 7
= 22 + 7 = 29
P7. Simplify these expressions and find their values if x = 3, a = − 1, b = − 2.
(i) 3x − 5 − x + 9
(ii) 2 − 8x + 4x + 4
(iii) 3a + 5 − 8a + 1
(iv) 10 − 3b − 4 − 5b
(v) 2a − 2b − 4 − 5 + a
Sol. (i)3x − 5 − x + 9
= 3x − x − 5 + 9
= 2x + 4
= (2 × 3) + 4
= 10
(ii) 2 − 8x + 4x + 4
= 2 + 4 − 8x + 4x
= 6 − 4x = 6 − (4 × 3)
= 6 − 12 = −6
(iii) 3a + 5 − 8a + 1
= 3a − 8a + 5 + 1
= − 5a + 6 = −5 × (−1) + 6
= 5 + 6 = 11
(iv) 10 − 3b − 4 − 5b
= 10 − 4− 3b − 5b
= 6 − 8b = 6 − 8 × (−2)
= 6 + 16 = 22
(v) 2a − 2b − 4 − 5 + a
= 2a + a − 2b − 4 − 5
= 3a − 2b − 9s
= 3 × (−1) − 2 (−2) − 9
= − 3 + 4 − 9 = −8
P7. Simplify these expressions and find their values if x = 3, a = − 1, b = − 2.
(i) 3x − 5 − x + 9
(ii) 2 − 8x + 4x + 4
(iii) 3a + 5 − 8a + 1
(iv) 10 − 3b − 4 − 5b
(v) 2a − 2b − 4 − 5 + a
Sol. (i) 3x − 5 − x + 9
= 3x − x − 5 + 9
= 2x + 4
= (2 × 3) + 4
= 10
(ii) 2 − 8x + 4x + 4
= 2 + 4 − 8x + 4x
= 6 − 4x
= 6 − (4 × 3)
= 6 − 12 = −6
(iii) 3a + 5 − 8a + 1
= 3a − 8a + 5 + 1
= − 5a + 6
= −5 × (−1) + 6
= 5 + 6 = 11
(iv) 10 − 3b − 4 − 5b
= 10 − 4− 3b − 5b
= 6 − 8b
= 6 − 8 × (−2)
= 6 + 16
= 22
(v) 2a − 2b − 4 − 5 + a
= 2a + a − 2b − 4 − 5
= 3a − 2b − 9s
= 3 × (−1) − 2 (−2) − 9
= − 3 + 4 − 9 = −8
P9.What should be the value of a if the value of 2x2 + x − a equals to 5, when x = 0?
Sol. 2x2 + x − a = 5, when x = 0
(2 × 0) + 0 − a = 5
0 − a = 5
a = −5
P10. Simplify the expression and find its value when a = 5 and b = −3.
2 (a2 + ab) + 3 − ab
Sol. 2 (a2 + ab) + 3 − ab
= 2a2 + 2ab + 3 − ab
= 2a2 + 2ab − ab + 3
= 2a2 + ab + 3
= 2 × (5 × 5) + 5 × (−3) + 3
= 50 − 15 + 3 = 38
EXERCISE-12.4
P1. Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.
If the number of digits formed is taken to be n, the number of segments required to form n digits is given by the algebraic expression appearing on the right of each pattern.
How many segments are required to form 5, 10, 100 digits of the kind −
Sol. (a) It is given that the number of segments required to form n digits of the kind is (5n + 1).
Number of segments required to form 5 digits = (5 × 5 + 1)
= 25 + 1 = 26
Number of segments required to form 10 digits = (5 × 10 + 1)
= 50 + 1 = 51
Number of segments required to form 100 digits = (5 × 100 + 1)
= 500 + 1 = 501
(b) It is given that the number of segments required to form n digits of the kind is (3n + 1).
Number of segments required to form 5 digits = (3 × 5 + 1)
= 15 + 1 = 16
Number of segments required to form 10 digits = (3 × 10 + 1)
= 30 + 1 = 31
Number of segments required to form 100 digits = (3 × 100 + 1)
= 300 + 1 = 301
(c) It is given that the number of segments required to form n digits of the kind is (5n + 2).
Number of segments required to form 5 digits = (5 × 5 + 2)
= 25 + 2 = 27
Number of segments required to form 10 digits = (5 × 10 + 2)
= 50 + 2 = 52
Number of segments required to form 100 digits = (5 × 100 + 2)
= 500 + 2 = 502
P2. Use the given algebraic expression to complete the table of number patterns.
S. No |
Expression |
Terms |
|||||||||
1st |
2nd |
3rd |
4th |
5th |
… |
10th |
… |
100th |
… |
||
(i) |
2n − 1 |
1 |
3 |
5 |
7 |
9 |
– |
19 |
– |
– |
– |
(ii) |
3n + 2 |
2 |
5 |
8 |
11 |
– |
– |
– |
– |
– |
– |
(iii) |
4n + 1 |
5 |
9 |
13 |
17 |
– |
– |
– |
– |
– |
– |
(iv) |
7n + 20 |
27 |
34 |
41 |
48 |
– |
– |
– |
– |
– |
– |
(v) |
n2 + 1 |
2 |
5 |
10 |
17 |
– |
– |
– |
– |
10, 001 |
– |
Sol. The given table can be completed as follows.
S.No. |
Expression |
Terms |
|||||||||
1st |
2nd |
3rd |
4th |
5th |
… |
10th |
… |
100th |
… |
||
(i) |
2n − 1 |
1 |
3 |
5 |
7 |
9 |
– |
19 |
– |
199 |
– |
(ii) |
3n + 2 |
2 |
5 |
8 |
11 |
17 |
– |
32 |
– |
302 |
– |
(iii) |
4n + 1 |
5 |
9 |
13 |
17 |
21 |
– |
41 |
– |
401 |
– |
(iv) |
7n + 20 |
27 |
34 |
41 |
48 |
55 |
– |
90 |
– |
720 |
– |
(v) |
n2 + 1 |
2 |
5 |
10 |
17 |
26 |
– |
101 |
– |
10,001- |
– |