Introduction to Trigonometry

EXERCISE-8.1

P 1: In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine

(i) sin A, cos A (ii) sin C, cos C

Sol. Applying Pythagoras theorem for ΔABC, we obtain

AC2 = AB2 + BC2

= (24 cm)2 + (7 cm)2

= (576 + 49) cm2

= 625 cm2

AC = 625cm = 25 cm

(i) sin A = Side opposite to A Htypotenuse =BCAC=75

cos A =  Side adjacent to A Hypotenuse =ABAC=2425

(ii)

sin C =  Side opposite to C Hypotenuse =ABAC=2425

cos C =  Side adjacent to C Hypotenuse =BCAC=725

P2. In the given figure find tan P − cot R

Sol. Applying Pythagoras theorem for ΔPQR, we obtain

PR2 = PQ2 + QR2

(13 cm)2 = (12 cm)2 + QR2

169 cm2 = 144 cm2 + QR2

25 cm2 = QR2

QR = 5 cm

tanP= Side opposite to P side adjacent to P=QRPQ = 512

cotR= side adjacent to R Side opposite to R=QRPQ = 512

tan P − cot R = 512512=0

P3. If sin A = 34, calculate cos A and tan A.

Sol. Let ΔABC be a right-angled triangle, right-angled at point B.

Given that,

sinA=34

BCAC=34

Let BC be 3k.

Therefore, AC will be 4k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC, we obtain

AC2 = AB2 + BC2

(4k)2 = AB2 + (3k)2

16k 2 − 9k 2 = AB2

7k 2 = AB2

AB = 7k

cosA= Side adjacent to A Hypotenuse  =ABAC=7k4k=74

tanA= Side opposite to A Side adjacent to A =BCAB=3k7k=37

P4. Given 15 cot A = 8. Find sin A and sec A

Sol. Consider a right-angled triangle, right-angled at B.

cosA= Side adjacent to A Side opposite to A=ABBC

It is given that, cot A = 815

ABBC=815

Let AB be 8k. Therefore, BC will be 15k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC, we obtain

AC2 = AB2 + BC2

= (8k)2 + (15k)2

= 64k2 + 225k2

= 289k2

AC = 17k

sinA= Side opposite to A Hypotenuse =BCAC =15k17k=1517

secA= Hypotenuse  Side adjacent to A = ACAB=178

P5. Given sec θ = 1312, calculate all other trigonometric ratios.

Sol. Consider a right-angle triangle ΔABC, right-angled at point B.

secθ= Hypotenuse  Side adjacent to θ

1312=ACAB

If AC is 13k, AB will be 12k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC, we obtain

(AC)2 = (AB)2 + (BC)2

(13k)2 = (12k)2 + (BC)2

169k2 = 144k2 + BC2

25k2 = BC2

BC = 5k

sinθ= Side opposite to θ Hypotenuse =BCAC =5k13k=513

cosθ= Side adjacent to θ Hypotenuse =ABAC =12k13k=1213

tanθ= Side opposite to θ Side adjacent to θ=BCAB =5k12k=512

cotθ= Side adjacent to θ Side opposite to θ=ABBC =12k5k=125

cosecθ= Hypotenuse  Side opposite to θ=ACBC =13k5k=135

P6. If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

Sol. Let us consider a triangle ABC in which CD ⊥ AB.

It is given that

cos A = cos B

ADAC=BDBC … (1)

We have to prove ∠A = ∠B. To prove this, let us extend AC to P such that BC = CP.

From equation (1), we obtain

ADBD=ACBC

ADBD=ACCP

(By construction we have BC = CP)

By using the converse of B.P.T, CD||BP

⇒ ∠ACD = ∠CPB (Corresponding angles) … (3)

And, ∠BCD = ∠CBP (Alternate interior angles) … (4)

By construction, we have BC = CP.

∠CBP ∠CPB (Angle opposite to equal sides of a triangle) … (5)

From equations (3), (4), and (5), we obtain

∠ACD = ∠BCD … (6)

In ΔCAD and ΔCBD,

∠ACD = ∠BCD [Using equation (6)]

∠CDA = ∠CDB [Both 90°]

Therefore, the remaining angles should be equal.

∠CAD = ∠CBD

⇒ ∠A = ∠B

Alternatively,

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that,

cos A = cos B

ADAC=BCBC

ADBD=ACBC

Let ADBD=ACBC=k

⇒ AD = k BD … (1)

And, AC = k BC … (2)

Using Pythagoras theorem for triangles CAD and CBD, we obtain

CD2 = AC2 − AD2 … (3)

And, CD2 = BC2 − BD2 … (4)

From equations (3) and (4), we obtain

AC2 − AD2 = BC2 − BD2

⇒ (BC)2 − (k BD)2 = BC2 − BD2

⇒ k2 (BC2 − BD2) = BC2 − BD2

⇒ k2 = 1 ⇒ k = 1

Putting this value in equation (2), we obtain

AC = BC

⇒ ∠A = ∠B (Angles opposite to equal sides of a triangle)

P7. If cot θ = 78, evaluate

(i) (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)

(ii) cot2 θ

Sol. Let us consider a right triangle ABC, right-angled at point B.

cotθ= Side adjacent to θ Side opposite to θ=78

If BC is 7k, then AB will be 8k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC, we obtain

AC2 = AB2 + BC2

= (8k)2 + (7k)2

= 64k2 + 49k2

= 113k2

AC = 113k

sinθ= Side opposite to θ Hypotenuse  =ABAC=8k113k=8113

cosθ= Side adjacent to θ Hypotenuse =BCAC =7k113k=7113

(i) (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=1sin2θ1cos2θ

=181132171132=164113149113

=4911364113=4964

(ii) cot2θ=(cotθ)2=782=4964

P8. If 3 cot A = 4, Check whether  1tan2A1+tan2A=cos2Asin2A or not.

Sol. It is given that 3cot A = 4

Or, cot A = 43

Consider a right triangle ABC, right-angled at point B.

cotA= Side adjacent to A Side opposite to A  ABBC=43

If AB is 4k, then BC will be 3k, where k is a positive integer.

In ΔABC,

(AC)2 = (AB)2 + (BC)2

= (4k)2 + (3k)2

= 16k2 + 9k2

= 25k2 AC

AC = 5k

cosA= Side adjacent to A Hypotenuse =ABAC =4k5k=45

sinA= Side opposite to A Hypotenuse =BCAC =3k5k=35

tanA= Side opposite to A Side adjacent to A=BCAB =3k4k=34

1tan2A1+tan2A=13421+342=19161+916 =7162516=725

cos2 A − sin2 A = 452352 =1625925=725

∴  1tan2A1+tan2A=cos2Asin2A

P9. In ΔABC, right angled at B. If tanA=13, find the value of

(i) sin A cos C + cos A sin C

(ii) cos A cos C − sin A sin C Sol.

tanA=13

BCAB=13

If BC is k, then AB will be 3k, where k is a positive integer.

In ΔABC,

AC2 = AB2 + BC2

= (3k)2+(k)2

= 3k2 + k2 

= 4k2

AC = 2k

sinA= Side opposite to A Hypotenuse  =BCAC=k2k=12

cosA= Side adjacent to A Hypotenuse  =ABAC=3k2k=32

sinC= Side opposite to C Hypotenuse  =ABAC=3k2k=32

cosC= Side adjacent to C Hypotenuse  =BCAC=k2k=12

(i) sin A cos C + cos A sin C =1212+3232=14+34=44=1

(ii) cos A cos C − sin A sin C =32121232 =3434=0

P10. In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

Sol. Given that,

PR + QR = 25

PQ = 5

Let PR be x.

Therefore, QR = 25 − x

Applying Pythagoras theorem in ΔPQR, we obtain

PR2 = PQ2 + QR2

x2 = (5)2 + (25 − x)2

x2 = 25 + 625 + x2 − 50x

50x = 650

x = 13

Therefore, PR = 13 cm

QR = (25 − 13) cm = 12 cm

sinP= Side opposite to P Hypotenuse  =QRPR=1213

cosP= Side opposite to P Hypotenuse  =PQPR=513

tanP= Side opposite to P Side adjacent to P =QRPQ=125

P11. State whether the following are true or false. Justify your answer.

(i) The value of tan A is always less than 1.

(ii) sec A = 125 for some value of angle A.

(iii) cos A is the abbreviation used for the cosecant of angle A.

(iv) cot A is the product of cot and A

(v) sinθ=43, for some angle θ

Sol. (i) Consider a ΔABC, right-angled at B.

tanA= Side opposite to A Side adjacent to A=125

But 125>1

tan A > 1

So, tan A < 1 is not always true.

Hence, the given statement is false.

(ii) secA=125

 Hypotenue  Side adjacent to A=125

ACAB=125

Let AC be 12k, AB will be 5k, where k is a positive integer.

Applying Pythagoras theorem in ΔABC, we obtain

AC2 = AB2 + BC2

(12k)2 = (5k)2 + BC2

144k2 = 25k2 + BC2

BC2 = 119k2

BC = 10.9k

It can be observed that for given two sides AC = 12k and AB = 5k,

BC should be such that,

AC − AB < BC < AC + AB

12k − 5k < BC < 12k + 5k

7< BC < 17 k

However, BC = 10.9k.

Clearly, such a triangle is possible and hence, such value of sec A is possible.

Hence, the given statement is true.

(iii) Abbreviation used for cosecant of angle A is cosec A. And cos A is the abbreviation used for cosine of angle A. Hence, the given statement is false.

(iv) cot A is not the product of cot and A. It is the cotangent of ∠A.

Hence, the given statement is false.

(v) sin θ = 43

We know that in a right-angled triangle,

sinθ= Side opposite to θ Hypotenuse 

In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of sin θ is not possible.

Hence, the given statement is false

EXERCISE-8.2

P1. Evaluate the following

(i) sin60° cos30° + sin30° cos 60°

(ii) 2tan245° + cos230° − sin260°

(iii) cos45°sin30°+cosec30°

(iv) sin30°+tan45°cosec60°sec30°+cos60°+cot45°

(v)  5cos260°+4sec230°tan245°sin230°+cos230°

Sol. (i) sin60° cos30° + sin30° cos 60°

=3232+1212 =34+14=44=1

(ii) 2tan245° + cos230° − sin260°

=2(1)2+322322 =2+3434=2

(iii) cos45°sec30°+cosec30°

=1223+2=122+233

=32(2+23)=322+26

=3(2622)(22+26)(2226)

=23(62)(26)2(22)2

=23(62)248

=23(62)16

=18168=3268

(iv) sin30°+tan45°coscc60°sec30°+cos60°+cot45°

=12+12323+12+1=322332+23

=3342333+423=(334)(33+4)

=(334)(334)(33+4)(334)=(334)2(33)2(4)2

=27+162432716=4324311

(v) 5cos260°+4sec230tan245°sin230°+cos230°

=5122+4232(1)2122+322

=514+163114+34

=15+64121244=6712

P2. Choose the correct option and justify your choice.

(i) 2tan30°1+tan230°=

(A). sin60°     (B). cos60°     (C). tan60°     (D). sin30°

(ii) 1tan245°1+tan245°=

(A). tan90°     (B). 1     (C). sin45°     (D). 0

(iii) sin2A = 2sinA is true when

A = (A). 0°     (B). 30°     (C). 45°     (D). 60°

(iv) 2tan30°1tan230°=

(A). cos60°     (B). sin60°     (C). tan60°     (D). sin30°

Sol. (i) 2tan30°1+tan230°

=2131+132=231+13=2343

=643=32

Out of the given alternatives, only sin60°=32

Hence, (A) is correct.

(ii) 1tan245°1+tan245°=1(1)21+(1)2=111+1=02=0

Hence, (D) is correct.

(iii) Out of the given alternatives, only A = 0° is correct.

As sin 2A = sin 0° = 0

2 sinA = 2sin 0° = 2(0) = 0

Hence, (A) is correct.

(iv) 2tan30°1tan230°

=2131132=23113=2323=3

Out of the given alternatives, only tan 60°

Hence, (C) is correct.

P3. If  tan(A+B)=3  and tan(AB)=13; 0° < A + B ≤ 90°, A > B find A and B.

Sol. tan(A+B)=3

tan(AB)=tan60°

⇒ A + B = 60 … (1)

tan(AB)=13

⇒ tan (A − B) = tan30

⇒ A − B = 30 … (2)

On adding both equations, we obtain

2A = 90

⇒ A = 45

From equation (1), we obtain

45 + B = 60

B = 15

Therefore, ∠A = 45° and ∠B = 15°

P4. State whether the following are true or false. Justify your answer.

(i) sin (A + B) = sin A + sin B

(ii) The value of sinθ increases as θ increases

(iii) The value of cos θ increases as θ increases

(iv) sinθ = cos θ for all values of θ

(v) cot A is not defined for A = 0°

Sol. (i) sin (A + B) = sin A + sin B

Let A = 30° and B = 60°

sin (A + B) = sin (30° + 60°) = sin 90° = 1

sin A + sin B = sin 30° + sin 60° =12+32=1+32

Clearly, sin (A + B) ≠ sin A + sin B

Hence, the given statement is false.

(ii) The value of sin θ increases as θ increases in the interval of 0° < θ < 90° as

sin 0° = 0

sin30°=12=0.5

sin45°=12=0.707

sin60°=32=0.866

sin 90° = 1

Hence, the given statement is true.

(iii) cos 0° = 1

cos30°=32=0.866

cos45°=12=0.707

cos60°=12=0.5

cos90° = 0

It can be observed that the value of cos θ does not increase in the interval of 0° < θ < 90°.

Hence, the given statement is false.

(iv) sin θ = cos θ for all values of θ.

This is true when θ = 45°

As sin45°=12

cos45°=12

It is not true for all other values of θ.

As sin30°=12 and cos30°=32,

Hence, the given statement is false.

(v) cot A is not defined for A = 0°

As cotA=cosAsinA,

cot0°=cos0°sin0°=10 = undefined

Hence, the given statement is true.

EXERCISE-8.3

P1. Evaluate

(I) sin18°cos72°

(II) tan26°cot64°

(III) cos 48° − sin 42°

(IV) cosec 31° − sec 59°

Sol. (I) sin18°cos72°=sin90°72°cos72°

(II) tan26°cot64°=tan90°64°cot64° =cot64°cot64°=1

(III) cos 48° − sin 42° = cos (90°− 42°) − sin 42° = sin 42° − sin 42° = 0

(IV) cosec 31° − sec 59°= cosec (90° − 59°) − sec 59°  = sec 59° − sec 59° = 0

P2. Show that

(I) tan 48° tan 23° tan 42° tan 67° = 1

(II) cos 38° cos 52° − sin 38° sin 52° = 0

Sol. (I) tan 48° tan 23° tan 42° tan 67°

= tan (90° − 42°) tan (90° − 67°) tan 42° tan 67°

= cot 42° cot 67° tan 42° tan 67°

= (cot 42° tan 42°) (cot 67° tan 67°)

= (1) (1)

= 1

(II) cos 38° cos 52° − sin 38° sin 52°

= cos (90° − 52°) cos (90°−38°) − sin 38° sin 52°

= sin 52° sin 38° − sin 38° sin 52°

= 0

P3. If tan 2A = cot (A− 18°), where 2A is an acute angle, find the value of A.

Sol. Given that, tan 2A

= cot (A− 18°) cot (90° − 2A)

= cot (A −18°) 90° − 2A

= A− 18° 108° = 3A

A = 36°

P4. If tan A = cot B, prove that A + B = 90°

Sol. Given that,

tan A = cot B

tan A = tan (90° − B)

A = 90° − B

A + B = 90°

P5. If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.

Sol. Given that,

sec 4A = cosec (A − 20°)

cosec (90° − 4A) = cosec (A − 20°)

90° − 4A= A− 20°

110° = 5A

A = 22°

P6. If A, Band C are interior angles of a triangle ABC then show thatsin(B+C2)=cosA2

Sol. We know that for a triangle ABC,

∠ A + ∠B + ∠C = 180°

∠B + ∠C= 180° − ∠A

B+C2=90°A2

sinB+C2sin90°A2 =cosA2

P7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.

Sol. sin 67° + cos 75° sin (90° − 23°) + cos (90° − 15°) cos 23° + sin 15°

EXERCISE-8.4

P1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Sol. We know that,

cosec2A=1+cot2A

1cosec2A=11+cot2A

sin2A=11+cot2A

sinA=±11+cot2A

1+cot2A will always be positive as we are adding two positive quantities.

Therefore, sinA=11+cot2A

We know that, sinA=sinAcosA

However, cotA=cosAsinA

Therefore, tanA=1cotA

Also, sec2A=1+tan2A =1+1cot2A =cot2A+1cot2A

secA=cot2A+1cotA

P2. Write all the other trigonometric ratios of ∠A in terms of sec A.

Sol. We know that,

cosA=1secA

Also, sin2 A + cos2 A = 1

sin2 A = 1 − cos2 A

sinA=11secA2

sec21sec2A=sec2A1secA

tan2A + 1 = sec2A

tan2A = sec2A – 1

tanA=sec2A1

cotA=cosAsinA=1secAsec2A1secA =1sec2A1

cosecA=1sinA=secAsec2A1

P3. Evaluate

(i)  sin263°+sin227°cos217°+cos273°

(ii) sin25° cos65° + cos25° sin65°

Sol. (i) sin263°+sin227°cos217°+cos273°

=sin90°27°2+sin227°cos90°73°2+cos273°

=cos27°2+sin227°sin73°2+cos273°

=cos227°+sin227°sin273°+cos273°

= 11 (As sin2A + cos2A = 1) = 1

(ii) sin25° cos65° + cos25° sin65°

=sin25°cos90°25°+ cos25°sin90°25°

=sin25°sin25°+cos25°cos25°

= sin225° + cos225°

= 1 (As sin2A + cos2A = 1)

P4. Choose the correct option. Justify your choice.

(i) 9 sec2 A − 9 tan2 A =

(A) 1     (B) 9     (C) 8     (D) 0

(ii) (1+tan θ + sec θ) (1 + cot θ − cosec θ)

(A) 0     (B) 1     (C) 2     (D) −1

(iii) (secA + tanA) (1 − sinA) =

(A) secA     (B) sinA     (C) cosecA     (D) cosA

(iv)  1+tan2A1+cot2A

(A) secA     (B) −1     (C) cotA     (D) tanA

Sol. (i) 9 sec2A − 9 tan2A

= 9 (sec2A − tan2A)

= 9 (1) [As sec2 A − tan2 A = 1]

= 9

Hence, alternative (B) is correct.

(ii) (1 + tan θ + sec θ) (1 + cot θ − cosec θ)

=1+sinθcosθ+1cosθ1+cosθsinθ1sinθ

=cosθ+sinθ+1cosθsinθ+cosθ1sinθ

=(sinθ+cosθ)2(1)2sinθcosθ

=sin2θ+cos2θ+2sinθcosθ1sinθcosθ

=1+2sinθcosθ1sinθcosθ=2

Hence, alternative (C) is correct.

(iii) (secA + tanA) (1 − sinA)

=1cosA+sinAcosA(1sinA)

=1sin2AcosA=cos2AcosA

= cosA

Hence, alternative (D) is correct.

(iv) 1+tan2A1+cot2A

=1+sin2Acos2A1+cos2Asin2A

= cos2A+sin2Acos2Asin2A+cos2Asin2A

=1cos2A1sin2A

=sin2Acos2A=tan2A

Hence, alternative (D) is correct.

P5. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) (cosecθcotθ)2=1cosθ1+cosθ

(ii) cosA1+sinA+1+sinAcosA=2secA

(iii) tanθ1cotθ+cotθ1tanθ=1+secθcosecθ

(iv) 1+secAsecA=sin2A1cosA

(v) cosAsinA+1cosA+sinA1=cosecA+cotA

(vi) 1+sinA1sinA=secA+tanA

(vii) sinθ2sin3θ2cosθcosθ=tanθ

(viii) (sinA+cosecA)2+(cosA+secA)2 =7+tan2A+cot2A

(ix) (cosecAsinA)(secAcosA)=1tanA+cotA

(x) 1+tan2A1+cot2A =1tanA1cotA2=tan2 A

Sol. (i) (cosecθcotθ)2=1cosθ1+cosθ

L.H.S=(cosecθcotθ)2

=1sinθcosθsinθ2

=(1cosθ)2(sinθ)2=(1cosθ)2sin2θ

=(1cosθ)21cos2θ=(1cosθ)2(1cosθ)(1+cosθ)

=1cosθ1+cosθ

= R.H.S

(ii) cosA1+sinA+1+sinAcosA=2secA

L.H.S = cosA1+sinA+1+sinAcosA

= cos2A+(1+sinA)2(1+sinA)(cosA)

= cos2A+1+sin2A+2sinA(1+sinA)(cosA)

= sin2A+cos2A+1+2sinA(1+sinA)(cosA)

=1+1+2sinA(1+sinA)(cosA)

= 2cosA=2secA

= R.H.S

(iii) tanθ1cotθ+cotθ1tanθ=1+secθcosecθ

L.H.S = tanθ1cotθ+cotθ1tanθ

=sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ

=sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθ

=sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)

=1(sinθcosθ)sin2θcosθcos2θsinθ

=1(sinθcosθ)sin2θcos2θsinθcosθ

=1(sinθcosθ)(sinθcosθ)sin2θ+cos2θ+sinθcosθsinθcosθ

=1+sinθcosθ(sinθcosθ)

= 1+ secθ cosecθ

= R.H.S.

(iv) 1+secAsecA=sin2A1cosA

L.H.S = 1+secAsecA=1+1cosA1cosA

=cosA+1cosA1cosA=(cosA+1)

=(1cosA)(1+cosA)(1cosA)

=1cos2A1cosA=sin2A1cosA

Using the identity cosec2  = 1 + cot2 A,

L.H.S = cosAsinA+1cosA+sinA1

=cosAsinAsinAsinA+1sinAcosAsinA+sinAsinA+1sinA

=cotA1+cosecAcotA+1cossecA

={(cotA)(1cosecA)} {(cotA)(1cosecA)}{(cotA)+(1cosecA)} {(cotA)(1cosecA)}

=(cotA1+cosecA)2(cotA)2(1cosecA)2             cot2A+1+cosec2A2cotA

=2cosecA+2cotAcosecAcot2A1+cosec2A2cosecA

=2cosec2A+2cotAcosecA2cotA2cosecAcot2A1cosec2A+2cosecA

=2cosec2A(cosecA+cotA)2(cotA+cosecA)cot2Acosec2A1+2cosecA

=(cosecA+cotA)(2cosecA2)11+2cosecA

=(cosecA+cotA)(2cosecA1)(2cosecA2)

= cosec A + cot A

= R.H.S

(vi) 1+sinA1sinA=secA+tanA

L.H.S = 1+sinA1sinA

=(1+sinA)(1+sinA)(1sinA)(1sinA)

=(1+sinA)1sin2 A=1+sinAcos2 A

=1+sinAcosA=secA+tanA=R·H.S

(vii) sinθ2sin3θ2cosθcosθ=tanθ

L.H.S = sinθ2sin3θ2cosθcosθ

=sinθ12sin2θcosθ2cos2θ1

=sinθ×12sin2θcosθ×21sin2θ1

=sinθ×12sin2θcosθ×12sin2θ

=tanθ=R.H.S

(viii) (sinA+cosecA)2+(cosA+secA)2

=7+tan2A+cot2A

L.H.S = (sinA+cosecA)2+(cosA+secA)2

=sin2A+cosec2A+2sinAcosecA+cos2A+sec2A+2cosAsecA

=sin2A+cos2A+cosec2A+sec2A +2sinA1sinA+2cosA1cosA

=(1)+1+cot2A+1+tan2A+(2)+(2)

=7+tan2A+cot2A = R.H.S

(ix) (cosecAsinA)(secAcosA)=1tanA+cotA

L.H.S = (cosecAsinA)(secAcosA)

=1sinAsinA1cosAcosA

=1sin2AsinA1cos2AcosA

=cos2Asin2AsinAcosA

=sinAcosA

R.H.S = 1tanA+cotA

=1sinAcosA+cosAsinA

=1sin2 A+cos2 AsinAcosA

=sinAcosAsin2A+cos2A

=sinAcosA

Hence, L.H.S = R.H.S

(x) 1+tan2A1+cot2A=1tanA1cotA2=tan2A

= 1+tan2A1+cot2A =1+sin2Acos2A1+cos2Asin2A =cos2A+sin2Acos2Asin2A+cos2Asin2A

=1cos2A1sin2A =sin2Acos2A=tan2A

1tanA1cotA2=1+tan2A2tanA1+cot2A2cotA

=sec2A2tanAcosec2A2cotA

=1cos2A2sinAcosA1sin2A2cosAsinA=12sinAcosAcos2A12sinAcosAsin2A

=sin2Acos2A=tan2A

Was this article helpful to you? Yes No