Factorisation

EXERCISE-14.1

P1. Find the common factors of the terms

(i) 12x, 36                               (ii) 2y, 22xy

(iii) 14pq, 28p2q2                         (iv) 2x, 3x2, 4

(v) 6abc, 24ab2, 12a2b          (vi) 16x3, −4x2, 32x

(vii) 10pq, 20qr, 30rp            (viii) 3x2y3, 10x3y2, 6x2y2z

Sol. (i) 12x = 2 × 2 × 3 × x

36 = 2 × 2 × 3 × 3

The common factors are 2, 2, 3.

And, 2 × 2 × 3 = 12

(ii) 2y = 2 × y

22xy = 2 × 11 × x × y

The common factors are 2, y.

And, 2 × y = 2y

(iii) 14pq = 2 × 7 × p × q

28p2q2 = 2 × 2 × 7 × p × p × q × q

The common factors are 2, 7, pq.

And, 2 × 7 × p × q = 14pq

(iv) 2x = 2 × x

3x2 = 3 × x × x

4 = 2 × 2

The common factor is 1.

(v) 6abc = 2 × 3 × a × b × c

24ab2 = 2 × 2 × 2 × 3 × a × b × b

12a2b = 2 × 2 × 3 × a × a × b

The common factors are 2, 3, ab.

And, 2 × 3 × a × b = 6ab

(vi) 16x3 = 2 × 2 × 2 × 2 × x × x × x

−4x2 = −1 × 2 × 2 × x × x

32x = 2 × 2 × 2 × 2 × 2 × x

The common factors are 2, 2, x.

And, 2 × 2 × x = 4x

(vii) 10pq = 2 × 5 × p × q

20qr = 2 × 2 × 5 × q × r

30rp = 2 × 3 × 5 × r × p

The common factors are 2, 5.

And, 2 × 5 = 10

(viii) 3x2y= 3 × x × × y × y × y

10x3y2 = 2 × 5 × x × x × x × y × y

6x2y2z = 2 × 3 × x × x × × y × z

The common factors are xxyy.

And, × × y × y = x2y2

P2. Factorise the following expressions

(i) 7x − 42                            (ii) 6p − 12q

(iii) 7a2 + 14a                      (iv) −16z + 20z3

(v) 20l2m + 30 alm             (vi) 5x2y − 15xy2

(vii) 10a2 − 15b2 + 20c2       (viii) −4a2 + 4ab − 4 ca

(ix) x2yz + xy2z + xyz2          (x) ax2y + bxy2 + cxyz

Sol. (i) 7x = 7 × x

42 = 2 × 3 × 7

The common factor is 7.

  7x − 42 = (7 × x) − (2 × 3 × 7) = 7 (x − 6)

(ii) 6p = 2 × 3 × p

12q = 2 × 2 × 3 × q

The common factors are 2 and 3.

  6p − 12q = (2 × 3 × p) − (2 × 2 × 3 × q) = 2 × 3 [p − (2 × q)] = 6 (p − 2q)

(iii) 7a2 = 7 × a × a

14a = 2 × 7 × a

The common factors are 7 and a.

7a2 + 14a = (7 × a × a) + (2 × 7 × a) = 7 × a [a + 2] = 7a (a + 2)

(iv) 16z = 2 × 2 × 2 × 2 × z

20z3 = 2 × 2 × 5 × z × z × z

The common factors are 2, 2, and z.

−16z + 20z3 = − (2 × 2 × 2 × 2 × z) + (2 × 2 × 5 × z × z × z)

= (2 × 2 × z) [− (2 × 2) + (5 × × z)]

= 4z (− 4 + 5z2)

(v) 20l2m = 2 × 2 × 5 × l × l × m

30alm = 2 × 3 × 5 × a × l × m

The common factors are 2, 5, l, and m.

20l2m + 30alm = (2 × 2 × 5 × l × l × m) + (2 × 3 × 5 × a × l × m)

= (2 × 5 × l × m) [(2 × l) + (3 × a)]

= 10lm (2l + 3a)

(vi) 5x2y = 5 × x × x × y

15xy2 = 3 × 5 × x × y × y

The common factors are 5, x, and y.

  5x2y − 15xy2 

= (5 × x × x × y) − (3 × 5 × x × y × y)

= 5 × x × y [x − (3 × y)]

= 5xy (x − 3y)

(vii) 10a2 = 2 × 5 × a × a

15b2 = 3 × 5 × b × b

20c2 = 2 × 2 × 5 × c × c

The common factor is 5.

10a2 − 15b2 + 20c2 = (2 × 5 × a × a) − (3 × 5 × b × b) + (2 × 2 × 5 × c × c)

= 5 [(2 × a × a) − (3 × b × b) + (2 × 2 × c × c)]

= 5 (2a2 − 3b2 + 4c2)

(viii) 4a2 = 2 × 2 × a × a

4ab = 2 × 2 × a × b

4ca = 2 × 2 × c × a

The common factors are 2, 2, and a.

−4a2 + 4ab − 4ca = − (2 × 2 × a × a) + (2 × 2 × a × b) − (2 × 2 × c × a)

= 2 × 2 × a [− (a) + b − c]

= 4a (−a + b − c)

(ix) x2yz = x × x × y × z

xy2z = x × y × y × z

xyz2 = x × y × z × z

The common factors are xy, and z.

  x2yz + xy2z + xyz2 = (x × x × y × z) + (x × y × y × z) + (x × y × z × z)

x × y × z [x + y + z]

xyz (x + y + z)

(x) ax2y = a × x × x × y

bxy2 = b × x × y × y

cxyz = c × x × y × z

The common factors are x and y.

ax2y + bxy2 + cxyz = (a × x × x × y) + (b × x × y × y) + (c × x × y × z)

= (x × y) [(a × x) + (b × y) + (c × z)]

xy (ax + by + cz)

P3. Factorise

(i) x2 + xy + 8x + 8y

(ii) 15xy − 6x + 5y − 2

(iii) ax + bx − ay − by

(iv) 15pq + 15 + 9q + 25p

(v) z − 7 + 7xy – xyz

Sol. (i) x2 + xy + 8x + 8y 

x × x + × y + 8 × x + 8 × y

(x + y) + 8 (x + y)

= (x + y) (x + 8)

(ii) 15xy − 6x + 5y − 2

= 3 × 5 × × y − 3 × 2 × + 5 × y − 2

= 3(5y − 2) + 1 (5y − 2)

= (5y − 2) (3x + 1)

(iii) ax + bx − ay − by 

× × x − a × y − × y

(a + b) − (a + b)

= (a + b) (x − y)

(iv) 15pq + 15 + 9q + 25p 

= 15pq + 9+ 25p + 15

= 3 × 5 × × q + 3 × 3 × q + 5 × 5 × p + 3 × 5

= 3q (5p + 3) + 5 (5p + 3)

= (5p + 3) (3q + 5)

(v) z − 7 + 7xy − xyz 

z − × y × z − 7 + 7 × x × y

z (1 − xy) − 7 (1 − xy)

= (1 − xy) (z − 7)

EXERCISE-14.2

P1. Factorise the following expressions.

(i) a2 + 8a + 16                            (ii) p2 − 10p + 25

(iii) 25m2 + 30m + 9                   (iv) 49y2 + 84yz + 36z2

(v) 4x2 − 8x + 4                           (vi) 121b2 − 88bc + 16c2

(vii) (l + m)2 − 4lm                      (viii) a4 + 2a2b2 + b4

(Hint: Expand (l + m)2 first)

Sol. (i) a2 + 8a + 16

= (a)2 + 2 × a × 4 + (4)2

= (a + 4)2          [(x + y)2 = x2 + 2xy + y2]

(ii) p2 − 10p + 25

= (p)2 − 2 × p × 5 + (5)2

= (p − 5)2           [(a − b)2 = a2 − 2ab + b2]

(iii) 25m2 + 30m + 9

= (5m)2 + 2 × 5m × 3 + (3)2

= (5m + 3)2       [(a + b)2 = a2 + 2ab + b2]

(iv) 49y+ 84yz + 36z2 

= (7y)2 + 2 × (7y) × (6z) + (6z)2

= (7y + 6z)2       [(a + b)2 = a2 + 2ab + b2]

(v) 4x− 8x + 4

= (2x)2 − 2 (2x) (2) + (2)2

= (2x − 2)2         [(a − b)2 = a2 − 2ab + b2]

= [(2) (x − 1)]2 = 4(x − 1)2

(vi) 121b− 88bc + 16c2 

= (11b)2 − 2 (11b) (4c) + (4c)2

= (11b − 4c)2      [(a − b)2 = a2 − 2ab + b2]

(vii) (l + m)2 − 4lm 

l2 + 2lm + m2 − 4lm

l2 − 2lm + m2

= (− m)2            [(a − b)2 = a2 − 2ab + b2]

(viii) a4 + 2a2b2 + b4 

= (a2)2 + 2 (a2) (b2) + (b2)2

= (a2 + b2)2        [(a + b)2 = a2 + 2ab + b2]

P2. Factorise

(i) 4p− 9q2

(ii) 63a2 − 112b2

(iii) 49x2 − 36

(iv) 16x5 − 144x3

(v) (l + m)2 − (l − m)2

(vi) 9x2y2 − 16

(vii) (x2 − 2xy + y2) − z2

(viii) 25a2 − 4b+ 28bc − 49c2

Sol. (i) 4p2 − 9q2 = (2p)2 − (3q)2

= (2p + 3q) (2p − 3q)

[a2 − b2 = (a − b) (a + b)]

(ii) 63a2 − 112b2 = 7(9a2 − 16b2)

= 7[(3a)2 − (4b)2]

= 7(3a + 4b) (3a − 4b)

[a2 − b2 = (a − b) (a + b)]

(iii) 49x2 − 36 = (7x)2 − (6)2

= (7x − 6) (7x + 6)

[a2 − b2 = (a − b) (a + b)]

(iv) 16x5 − 144x3 = 16x3(x2 − 9)

= 16 x3 [(x)2 − (3)2]

= 16 x3(x − 3) (x + 3)

[a2 − b2 = (a − b) (a + b)]

(v) (l + m)2 − (l − m)2 = [(l + m) − (l − m)] [(l + m) + (l − m)]

[Using identity a2 − b2 = (a − b) (a + b)]

= (l + m − l + m) (l + m + l − m)

= 2× 2l

= 4ml

= 4lm

(vi) 9x2y2 − 16 = (3xy)2 − (4)2

= (3xy − 4) (3xy + 4) [a2 − b2 = (a − b) (a + b)]

(vii) (x2 − 2xy + y2) − z2 = (x − y)2 − (z)2 [(a − b)2 = a2 − 2ab + b2]

= (x − y − z) (x − y + z)

[a2 − b2 = (a − b) (a + b)]

(viii) 25a2 − 4b2 + 28bc − 49c2 = 25a2 − (4b2 − 28bc + 49c2)

= (5a)2 − [(2b)2 − 2 × 2b × 7c + (7c)2]

= (5a)2 − [(2b − 7c)2]

[Using identity (a − b)2 = a2 − 2ab + b2]

= [5a + (2b − 7c)] [5a − (2b − 7c)]

[Using identity a2 − b2 = (a − b) (a + b)]

= (5a + 2b − 7c) (5a − 2b + 7c)

P3. Factorise the expressions

(i) ax2 + bx                               (ii) 7p2 + 21q2

(iii) 2x3 + 2xy2 + 2xz2                (iv) am2 + bm2 + bn2 + an2

(v) (lm + l) + m + 1                (vi) y(y + z) + 9(y + z)

(vii) 5y2 − 20y − 8z + 2yz      (viii) 10ab + 4a + 5b + 2

(ix) 6xy − 4y + 6 − 9x

Sol. (i) ax2 + bx = a × x × x + b × x = x(ax + b)

(ii) 7p2 + 21q2 = 7 × p × p + 3 × 7 × q × q = 7(p2 + 3q2)

(iii) 2x3 + 2xy2 + 2xz2 = 2x(x2 + y2 + z2)

(iv) am2 + bm2 + bn2 + an2 

am2 + bm2 + anbn2

m2(a + b) + n2(a + b)

= (a + b) (m2 + n2)

(v) (lm + l) + m + 1

lm + m + l + 1

m(l + 1) + 1(l + 1)

= (l + l) (m + 1)

(vi) y (y + z) + 9 (y + z) = (y + z) (y + 9)

(vii) 5y2 − 20y − 8z + 2yz 

= 5y2 − 20y + 2yz − 8z

= 5y(y − 4) + 2z(y − 4)

= (y − 4) (5y + 2z)

(viii) 10ab + 4a + 5b + 2

= 10ab + 5b + 4a + 2

= 5b(2a + 1) + 2(2a + 1)

= (2a + 1) (5b + 2)

(ix) 6xy − 4y + 6 − 9x = 6xy − 9x − 4y + 6

= 3x(2y − 3) − 2(2y − 3)

= (2y − 3) (3x − 2)

P4. Factorise

(i) a4 − b4                       

(ii) p4 − 81

(iii) x4 − (y + z)4       

(iv) x4 − (x − z)4

(v) a4 − 2a2b2 + b4

Sol. (i) a4 − b4 = (a2)2 − (b2)2

= (a2 − b2) (a2 + b2)

= (a − b) (a + b) (a2 + b2)

(ii) p4 − 81 = (p2)2 − (9)2

= (p2 − 9) (p2 + 9)

= [(p)2 − (3)2] (p2 + 9)

= (p − 3) (p + 3) (p2 + 9)

(iii) x4 − (y + z)4 = (x2)2 − [(y +z)2]2

= [x2 − (y + z)2] [x2 + (y + z)2]

= [x − (y + z)][ x + (y + z)]

[x2 + (y + z)2]

= (x − y − z) (x + y + z) [x2 + (y + z)2]

(iv) x4 − (x − z)4 = (x2)2 − [(x − z)2]2

= [x2 − (x − z)2] [x2 + (x − z)2]

= [x − (x − z)] [x + (x − z)]

[x2 + (x − z)2]

z(2x − z) [x2 + x2 − 2xz + z2]

z(2x − z) (2x2 − 2xz + z2)

(v) a4 − 2a2b2 + b4 

= (a2)2 − 2 (a2) (b2) + (b2)2

= (a− b2)2

= [(a − b) (a + b)]2

= (a − b)2 (a + b)2

P5. Factorise the following expressions

(i) p2 + 6p + 8

(ii) q2 − 10q + 21

(iii) p2 + 6p − 16

Sol. (i) p2 + 6p + 8

It can be observed that, 8 = 4 × 2 and 4 + 2 = 6

p2 + 6p + 8 = p2 + 2p + 4p + 8

p(p + 2) + 4(p + 2)

= (p + 2) (p + 4)

(ii) q2 − 10q + 21

It can be observed that, 21 = (−7) × (−3) and (−7) + (−3) = − 10

q2 − 10q + 21 = q2 − 7q − 3q + 21

q(q − 7) − 3(q − 7)

= (q − 7) (q − 3)

(iii) p2 + 6p − 16

It can be observed that, 16 = (−2) × 8 and 8 + (−2) = 6

p2 + 6p − 16 = p2 + 8p − 2p − 16

p(p + 8) − 2(p + 8)

= (p + 8) (p − 2)

EXERCISE-14.3

P1. Carry out the following divisions.

(i) 28x4 ÷ 56x

(ii) −36y3 ÷ 9y2

(iii) 66pq2r3 ÷ 11qr2

(iv) 34x3y3z3 ÷ 51xy2z3

(v) 12a8b8 ÷ (−6a6b4)

Sol. (i) 28x4 = 2 × 2 × 7 × x × x × x × x

56x = 2 × 2 × 2 × 7 × x

28x4÷56x=2×2×7×x×x×x×x2×2×2×7×x

=x32=12x3

 (ii) 36y3 = 2 × 2 × 3 × 3 × y × y × y

9y2 = 3 × 3 × y × y

36y3÷9y2=2×2×3×3×y×y×y3×3×y×y

=4 y

(iii) 66 pq2 r

= 2 × 3 × 11 × p × q × q × r × r × r

11qr2 = 11 × q × r × r

66pq2r3÷11qr2

=2×3×11×p×q×q×r×r×r11×q×r×r

= 6pqr

(iv) 34 x3y3z3

 = 2 × 17 × x × x × x × y × y × y × z × z × z

51 xy2z3 = 3 ×17 × x × y × y ×z × z × z

34x3y3z3÷51xy2z3

=2×17×x×x×x×y×y×y×z×z×z3×17×x×y×y×z×z×z

=23x2y

(v) 12a8b8 = 2 × 2 × 3 × a8 × b8

6a6b4 = 2 × 3 × a6 × b4

12a8b8÷6a6b4=2×2×3×a8×b82×3×a6×b4

= −2a2b4

P2. Divide the given polynomial by the given monomial.

(i) (5x2 − 6x) ÷ 3x

(ii) (3y− 4y6 + 5y4) ÷ y4

(iii) 8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2

(iv) (x3 + 2x2 + 3x) ÷ 2x

(v) (p3q6 − p6q3) ÷ p3q3

Sol. (i) 5x2 − 6x = x(5x − 6)

(5x2 – 6x)÷3x

=x(5x6)3x=13(5x6)

(ii) 3y8 − 4y6 + 5y4 = y4(3y4 − 4y2 + 5)

(3y8 – 4y6 + 5y4)÷ y4

=y43y44y2+5y4

= 3y4 − 4y2 + 5

(iii) 8(x3y2z2 + x2y3z2 + x2y2z3)

= 8x2y2z2(x + y + z)

8(x3y2z2 + x2y3z2 + x2y2z3)÷4 x2y2z2

=8x2y2z2(x+y+z)4x2y2z2

(iv) x3 + 2x+ 3x = x(x2 + 2x + 3)

(x3 – 2x2 + 3x)÷2x

=xx2+2x+32x

=12(x2 + 2x + 3)

(v) p3q6− p6qp3q3(q3 − p3)

(p3q6 – p6q3)÷p3q3

=p3q3q3p3p3q3

= q3 – p3

P3. Work out the following divisions.

(i) (10x − 25) ÷ 5

(ii) (10x − 25) ÷ (2x − 5)

(iii) 10y(6y + 21) ÷ 5(2y + 7)

(iv) 9x2y2(3z − 24) ÷ 27xy(z − 8)

(v) 96abc(3a − 12)(5b − 30) ÷ 144(a − 4) (b − 6)

Sol. (i) (10x − 25) ÷ 5

=2×5×x5×55

=5(2x5)5=2x5

(ii) (10x − 25) ÷(2x − 5)

=2×5×x5×52x5

=5(2x5)2x5=5

(iii) 10y(6y + 21) ÷ 5(2y + 7)

=2×5×y[2×3×y+3×7]5(2y+7)

=2×5×y×3(2y+7)5(2y+7)=6y

(iv) 9x2y2(3z − 24) ÷ 27xy(z − 8)

=9x2y2[3×z2×2×2×3]27xy(z8)

=xy×3(z8)3(z8)=xy

(v) 96abc(3a − 12)(5b − 30) ÷ 144(a − 4) (b − 6)

=96abc(3×a3×4)(5×b2×3×5)144(a4)(b6)

=2abc×3(a4)×5(b6)3(a4)(b6)

= − 10abc

P4. Divide as directed.

(i) 5(2x + 1) (3x + 5) ÷ (2x + 1)

(ii) 26xy(x + 5) (y − 4) ÷ 13x(y − 4)

(iii) 52pqr (p + q) (q + r) (r + p) ÷ 104pq(q + r) (r + p)

(iv) 20(y + 4) (y2 + 5y + 3) ÷ 5(y + 4)

(v) x(x + 1) (x + 2) (x + 3) ÷ x(x + 1)

Sol. (i) 5(2x + 1) (3x + 5) ÷ (2x + 1)

=5(2x+1)(3x+1)(2x+1)

= 5(3x + 1)

(ii) 26xy(x + 5) (y − 4) ÷ 13x(y − 4)

=2×13×xy(x+5)(y4)13x(y4)

= 2y (x + 5)

(iii) 52pqr (p + q) (q + r) (r + p) ÷ 104pq (q + r) (r + p)

=2×2×13×p×q×r×(p+q)×(q+r)×(r+p)2×2×2×13×p×q×(q+r)×(r+p)

=12r(p+q)

(iv) 20(y + 4) (y2 + 5y + 3) = 2 × 2 × 5 × (y + 4) (y2 + 5y + 3)

20(y + 4) (y2 + 5y + 3) ÷ 5(y + 4)

=2×2×5×(y+4)×y2+5y+35×(y+4)

= 4(y2 + 5y + 3)

(v) x(x + 1) (x + 2) (x + 3) ÷ x(x + 1)

=x(x+1)(x+2)(x+3)x(x+1)

= (x + 2) (x + 3)

P5. Factorise the expressions and divide them as directed.

(i) (y2 + 7y + 10) ÷ (y + 5)

(ii) (m2 − 14m − 32) ÷ (m + 2)

(iii) (5p2 − 25p + 20) ÷ (p − 1)

(iv) 4yz(z2 + 6z − 16) ÷ 2y(z + 8)

(v) 5pq(p2 − q2) ÷ 2p(p + q)

(vi) 12xy(9x2 − 16y2) ÷ 4xy(3x + 4y)

(vii) 39y3(50y2 − 98) ÷ 26y2(5y + 7)

Sol. (i) (y2 + 7y + 10) = y2 + 2y + 5y + 10

y (y + 2) + 5 (y + 2)

= (y + 2) (y + 5)

(y2 + 7y + 10) ÷ (y + 5)

=(y+5)(y+2)(y+5)=y+2

(ii) m2 − 14m − 32 = m2 + 2m − 16m − 32

m (m + 2) − 16 (m + 2)

= (m + 2) (m − 16)

(m2 − 14m − 32)÷(m + 2)

=(m+2)(m16)(m+2)=m16

(iii) 5p2 − 25p + 20 = 5(p2 − 5p + 4)

= 5[p2 − p − 4p + 4]

= 5[p(p −1) − 4(p −1)]

= 5(p −1) (p − 4)

(5p2 − 25p + 20) ÷ (p – 1)

=5(p1)(p4)(p1)=5p4

(iv) 4yz(z2 + 6z −16)

= 4yz [z2 − 2z + 8z − 16]

= 4yz [z(z − 2) + 8(z − 2)]

= 4yz(z − 2) (z + 8)

4yz(z2+6z−16)÷2y(z + 8)

=4yz(z2)(z+8)2y(z+8)=2zz2

(v) 5pq(p− q2)

= 5pq (p − q) (p + q)

5pq(p2 − q2)÷2p(p + q)

=5pq(pq)(p+q)2p(p+q)

=52q(pq)

 (vi) 12xy(9x2 − 16y2)

= 12xy[(3x)2 − (4y)2]

= 12xy(3x − 4y) (3x + 4y)

12xy(9x2−16y2)÷ 4xy(3x + 4y)

=2×2×3×x×y×(3x4y)×(3x+4y)2×2×x×y×(3x+4y)

= 3(3x – 4y)

(vii) 39y3(50y2 − 98)

= 3 × 13 × y × y × y × 2[(25y2 − 49)]

= 3 × 13 × 2 × y × y × y × [(5y)2 − (7)2]

= 3 × 13 × 2 × y × y × y (5y − 7)(5y + 7)

26y2(5y + 7) = 2 × 13 × y × y × (5y + 7)

39y3(50y2 − 98) ÷26y2 (5y + 7)

EXERCISE-14.4

P1. Find and correct the errors in the statement: 4(x − 5) = 4x − 5

Sol. L.H.S. = 4(x − 5)

= 4 × x − 4 × 5

= 4x − 20 ≠ R.H.S.

The correct statement is 4(x − 5) = 4x − 20

P2. Find and correct the errors in the statement: x(3x + 2) = 3x2 + 2

Sol. L.H.S. = x(3x + 2)

x × 3x × 2

= 3x2 + 2x ≠ R.H.S.

The correct statement is x(3x + 2) = 3x2 + 2x

P3. Find and correct the errors in the statement: 2x + 3y = 5xy

Sol. L.H.S = 2x + 3y ≠ R.H.S.

The correct statement is 2+ 3y  = 2x + 3y

P4. Find and correct the errors in the statement: x + 2x + 3x = 5x

Sol. L.H.S = + 2x + 3x 

=1+ 2x + 3x 

x(1 + 2 + 3) = 6≠ R.H.S.

The correct statement is x + 2x + 3x = 6x

P5. Find and correct the errors in the statement: 5y + 2y + y − 7y = 0

Sol. L.H.S. = 5+ 2y + y − 7y 

= 8y − 7y 

y ≠ R.H.S

The correct statement is 5+ 2− 7y = y

P6. Find and correct the errors in the statement: 3x + 2x = 5x2

Sol. L.H.S. = 3x + 2x 

= 5x ≠ R.H.S

The correct statement is 3x + 2x = 5x

P7. Find and correct the errors in the statement: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7

Sol. L.H.S = (2x)2 + 4(2x) + 7

= 4x2 + 8x + 7 ≠ R.H.S

The correct statement is (2x)2 +4(2x)+ 7 = 4x2 + 8+ 7

P8. Find and correct the errors in the statement: (2x)2 + 5x = 4x + 5x = 9x

Sol. L.H.S = (2x)2 + 5x 

= 4x2 + 5x ≠ R.H.S.

The correct statement is (2x)2 + 5x  = 4x2 + 5x

P9. Find and correct the errors in the statement: (3x + 2)2 = 3x2 + 6x + 4

Sol. L.H.S. = (3+ 2)2 

= (3x)2 + 2(3x)(2) + (2)2      [(a + b)2 = a2 + 2ab + b2]

= 9x2 + 12x + 4 ≠ R.H.S

The correct statement is (3x + 2)2  = 9x2 + 12x + 4

P10 Find and correct the errors in the following mathematical statement. Substituting x = −3 in

(a) x2 + 5x + 4 gives (−3)2 + 5 (−3) + 4 = 9 + 2 + 4 = 15

(b) x2 − 5x + 4 gives (−3)2 − 5 (−3) + 4 = 9 − 15 + 4 = −2

(c) x2 + 5x gives (−3)2 + 5 (−3) = −9 − 15 = −24

Sol. (a) For x = −3,

x2 + 5x + 4 = (−3)2 + 5 (−3) + 4

= 9 − 15 + 4 = 13 − 15 = −2

(b) For x = −3,

x2 − 5x + 4 = (−3)2 − 5 (−3) + 4

= 9 + 15 + 4 = 28

(c) For x = −3,

x2 + 5x = (−3)2 + 5(−3) = 9 − 15 = −6

P11. Find and correct the errors in the statement: (y − 3)2 = y2 − 9

Sol. L.H.S = (y − 3)2 

= (y)2 − 2(y)(3) + (3)2     [(a − b)2 = a2 − 2ab + b2]

y2 − 6y + 9 ≠ R.H.S

The correct statement is (y − 3)2y2 − 6y+9

P12. Find and correct the errors in the statement: (z + 5)2 = z2 + 25

Sol. L.H.S = (+ 5)2 

= (z)2 + 2(z)(5) + (5)2       [(a + b)2 = a2 + 2ab + b2]

z2 + 10z + 25 ≠ R.H.S

The correct statement is (+ 5)2  = z2 + 10+ 25

P13. Find and correct the errors in the statement: (2a + 3b) (a − b) = 2a2 − 3b2

Sol. L.H.S. = (2a + 3b) (a − b)

= 2a × a + 3b × a − 2a × b − 3b × b

= 2a2 + 3ab − 2ab − 3b2 

= 2a2 + ab − 3b2 ≠ R.H.S.

The correct statement is (2a + 3b) (a − b) = 2a2 + ab − 3b2

P14. Find and correct the errors in the statement: (a + 4) (a + 2) = a2 + 8

Sol. L.H.S. = (a + 4) (a + 2)

= (a)2 + (4 + 2) (a) + 4 × 2

a2 + 6+ 8 ≠ R.H.S

The correct statement is (a + 4) (a + 2) = a2 + 6+ 8

P15. Find and correct the errors in the statement: (a − 4) (− 2) = a2 − 8

Sol. L.H.S. = (a − 4) (a − 2)

= (a)2 + [(− 4) + (− 2)] (a) + (− 4) (− 2)

a2 − 6a + 8 ≠ R.H.S.

The correct statement is (− 4) (a − 2) = a2 − 6a + 8

P16. Find and correct the errors in the statement: =3x23x2=0

Sol. L.H.S =3x23x2

=3×x×x3×x×x= 1 R.H.S

The correct statement is 3x23x2=1

P17. Find and correct the errors in the statement: 3x2+13x2=1+1=2

Sol. L.H.S =3x2+13x2

=3x23x2+13x2

=1+13x2

 = 1R.H.S

The correct statement is 3x2+13x2=1+13x2

P18. Find and correct the errors in the statement: 3x3x+2=12

Sol. L.H.S =3x3x+2R·H·S

The correct statement is 3x3x+2=3x3x+2

P19. Find and correct the errors in the statement: 34x+3=14x

Sol. L.H.S. =34x+3R·H·S

The correct statement is 34x+3=34x+3

P20. Find and correct the errors in the statement: 4x+54x=5

Sol. L.H.S. = 4x+54x=4x4x+=54x

=1+54xR.H.S.

The correct statement is 4x+54x=1+54x

P21. Find and correct the errors in the statement: 7x+55=7x

Sol. L.H.S.=7x+55=7x5+55=7x5+1R.H.S.

The correct statement is  7x+55=7x5+1

Was this article helpful to you? Yes No