Trogonometric Functions

1. MEASUREMENT OF ANGLES

Angle

An angle is considered as figure obtained by rotating a given ray about its initial point. The original ray (before rotation) is known as initial side and the final position of the ray (after rotation) is known as terminal side of the angle, the point of rotation is known as vertex. The angle is said to be positive or negative as the rotation is anti-clockwise or clockwise.

There are two methods used in measuring angles.

Sexagesimal System (Degree Measure)

The measure of an angle will be one degree, if the rotation from initial side to terminal side is 1360th of a revolution.

1 right angle = 90 degrees   (= 90°)

1 degree = 60 minutes   (= 60’)

1 minute = 60 seconds   (= 60”)

Circular System (Radian Measure)

One radian is the angle subtended at the centre of any circle by an arc of the circle equal in length to the radius.

Relation between Degrees and Radians

The angle subtended by a circle at its centre = 2πc=360°

p radians = 180 degrees or πc = 180°

1c=180π0=57°16  (Approx)

LENGTH OF AN ARC OF A CIRCLE

Length of arc = (radius of the circle) × (angle subtended by that arc at the centre of circle)

arc PQ =r if the length of arc PS = l,

then l=r θ

Illustration-1:

Find the radian measure corresponding to 37° 30.

Solution:

60=1°30=12°37°30=3712°=75°2

360°=2π radians 75°2=2π360×752 radians =5π24 radians 

Illustration-2:

The minute hand of a clock is 10 cm long. How far does the tip of the hand move in 20 minutes ?

Solutio :

The minute hand moves through 120° in 20 minutes or moves through 2π3 radians.

Since the length of the minute hand is 10 cm, the distance moved by the tip of the hand is given by the formula l = =10×2π3=20π3 cm

2. TRIGONOMETRIC FUNCTIONS OF AN ANGLE

The six trigonometric ratios sine, cosine, tangent, cotangent, secant and cosecant of an angle θ, 0° < θ < 90° are defined as the ratios of two sides of a right-angled triangle with θ as one of the angles.

cosθ = x, the x coordinate of P

sinθ = y, the y coordinate of P

tanθ = yx, x0

cotθ = xy, y0

secθ=1x, x0

cosecθ=1y, y0

Angles measured anticlockwise from the initial line OX are deemed to be positive and angles measured clockwise are considered to be negative.  

The range and sign of the trigonometric ratios in the four quadrants are depicted in the following table.

1. TRIGONOMETRIC FUNCTIONS OF ()

sin(-θ) = -sin(-θ)
cos(-θ) = cosθ
tan(-θ) = -tanθ

2. CIRCULAR FUNCTIONS OF ALLIED ANGLES

When θ is an acute angle, 90° – θ is called the angle complementary to θ.  When θ is acute, θ and 180° – θ are called supplementary angles.

TABLE OF FORMULAE FOR ALLIED ANGLES  

 

180°  θ

180° + θ

360°  θ

 θ

90° θ

90° + θ

270°  θ

270° + θ

Sin

sinθ

– sinθ

– sinθ

– sinθ

cosθ

cosθ

– cosθ

– cosθ

Cos

– cosθ

– cosθ

cosθ

cosθ

sinθ

-sinθ

-sinθ

sinθ

Tan

-tanθ

+tanθ

-tanθ

-tanθ

cotθ

-cotθ

cotθ

-cotθ

3. SOME IMPORTANT FACTS

(i) For any power n, (sin A)n is written as sinnA. Similarly for all trigonometric ratios.
(ii) sin2A + cos2A = 1; 1 + tan2A = sec2A and 1 + cot2A = cosec2A.
(iii) |sinA| 1 -1 sinA 1
        |cosA| 1 -1 cosA 1
(iv) The trigonometric ratios are also called as trigonometric functions. They are also sometimes called circular functions.

ANGLE/ RATIO

30°

45°

60°

90°

sine

0

12

12 32

1

cosine

1

32 12

12

0

tangent

0

13

1

3

undefined

cotangent

undefined

3

1

13

0

secant

1

23

2

2

undefined

cosecant

undefined

2

2

23

1

Illustration-3:

Evaluate: cos(3030°).

Solution:

cos(-3030°) = cos(3030°) (using cos(-θ) = cosθ) = cos(8 × 360° + 150°)

                       = cos150° = cos(180° – 30°) = – cos30° =32.

Illustration-4:

Find the values of the other five trigonometric functions if .

Solution:

cos θ is negative in IInd and IIIrd quadrant only

In IInd quadrant sine and cosecant is positive and other trigonometric ratios are negative.
Now construct a right angle triangle with base BC = 1 and hypotenuse AC = 2
perpendicular AB = 3

 sinθ=ABAC=32cosecθ=ACAB=23

tanθ=ABBC=3cotθ=BCAB=13

and  secθ=ACBC=2

In IIIrd quadrant only tangent and cotangent are positive and rest are negative

sinθ=32, tanθ=3, cotθ=13, secθ=2 and cosecθ=23

Illustration-5:

Simplify: sin3π2θcosπ2+θtanπ2+θsin3π2θsec(π+θ).

Solution:

The expression = (cosθ)(sinθ)cotθ(cosθ)(secθ)=sin2θcos2θ=sin2θ+cos2θ=1.  

Illustration-6:

Prove that cosec4θ(1 cos4θ) = 1 + 2cot2θ.

Solution:

cosec4θ(1 – cos4θ) – 2cot2θ

= cosec2θ1cos2θ1+cos2θsin2θ – 2cot2θ = cosec2θ1+cos2θ2cot2θ

= cosec2θ + cot2θ – 2cot2θ = 1 + 2 cot2θ – 2cot2θ = 1 

3. CIRCULAR FUNCTIONS OF COMPOUND ANGLES

1. Addition and subtraction formulae

  •  cos(θ + ϕ) = cosθ cosϕ sinθ sinϕ
  • cos(θ + ϕ) = cosθ cosϕ + sinθ sinϕ
  • sin(θ + ϕ) = sinθ cosϕ + cosθ sinϕ

  • sin(θ – ϕ) = sinθ cosϕ cosθ sinϕ

  • tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ
  • tan(θϕ)=tanθtanϕ1+tanθtanϕ
  • cot(θ+ϕ)=cotθcotϕ1cotϕ+cotθ
  • cot(θϕ)=cotθcotϕ+1cotϕcotθ

Illustration-7:

If sinθ = 817 and cosβ = 941, find sin(θ + β), cos(θ + β), sin(θ – β) and cos(θ – β), where q is an obtuse angle and β is an acute angle.

Solution :

Since sinθ = 817, cos2θ = 164289=225289

∴ cosθ = ±1517.  As θ is obtuse, cosθ is negative.

cosθ=1517

sin2β=1811681=16001681

  sinβ=±4041

As β is acute, sinβ is positive

sinβ=+4041

Now sin(θ + β) = sinθ cosβ + cosθ sinβ = 817.941+15174041=72600697=528697

cos(θ + β) = cosθ cosβ – sinθ sinβ = 15179418174041=455697

sin(θ – β) = sinθ cosβ – cosθ sinβ = 81794115174041=672697

cos(θ – β) = cosθ cosβ + sinθ sinβ = 1517941+8174041=185697.

Illustration-8:

Show that cosθ+sin(270°+θ)sin(270°θ)+cos(180°+θ)=0.

Solution:

L.H.S = cosθ+sin270°+θsin270°θ+cos180°+θ
            = cosθcosθ+cosθcosθ = 0 = R.H.S

2. MULTIPLE ANGLE FORMULAE

(a) Functions of 2A

(i) sin2A = 2sinA cosA

(ii) cos2A = cos2A  – sin2A = 2 cos2A – 1 = 1  – 2sin2A

(iii) tan2A = 2tanA1tan2A

(b) Functions of 3A

(i) sin3A = 3sinA – 4sin3A

(ii) cos3A = 4cos3A 3 cosA

(iii) tan3A = 3tanAtan3A13tan2A

Illustration-9:

Prove that tan(π/4+A)tan(π/4A)=2cosA+sinA+sin3A2cosAsinAsin3A

Solution:

L.H.S. = 1+tanA1tanA1tanA1+tanA=(1+tanA)2(1tanA)2=1+tan2A+2tanA1+tan2A2tanA

=1+2tanA1+tan2A12tanA1+tan2A=1+sin2A1sin2A

R.H.S.= 2cosA+2sin2A·cosA2cosA2sin2AcosA=2cosA(1+sin2A)2cosA(1sin2A)=1+sin2A1sin2A

Both sides reduce to the same result. 

3. EXPRESSING PRODUCTS OF TRIGONOMETRIC FUNCTIONS AS SUM OR DIFFERENCE

(i) 2sinA cosB = sin(A + B) + sin(A B)
(ii) 2cosA sinB = sin(A + B) – sin(A B)
(iii) 2cosA cosB = cos(A + B) + cos(A B)
(iv) 2sinA sinB = cos(A B) – cos(A + B)

Illustration-10:
Show that 8 sin 10° sin 50° sin 70° = 1.
Solution:

L.H.S. = 4 (2sin 50° sin 10°) sin70°

             = 4 {cos(50° – 10°) – cos (50° + 10°)} sin70°, using 2 sinA sinB

             = 2{sin110° + sin30°} -2 sin70° since cos60° = 1/2.

             = cos(A B) – cos(A + B)

             = 4(cos40°   cos60°) sin70°

              = 2.(2sin70°. cos40°) – 4cos60°  sin70°= 2sin70° + 2sin30° – 2sin70°

               = 2sin30° = 1. 

4. EXPRESSING SUM OR DIFFERENCE OF TWO SINES OR TWO COSINES AS A PRODUCT

sinC + sinD = 2sinC+D2.cosCD2

sinC sinD = 2cosC+D2.sinCD2

cosC + cosD = 2cosC+D2.cosCD2

cosD cosC = 2sinC+D2.sinCD2

Illustration-11:

Show that sin7xsin3xsin5x+sinxcos7x+cos3xcos5xcosx=tan2x

Solution:

Numerator = (sin7x + sinx) – (sin5x + sin3x)

                     = 2sin4x  . cos3x 2sin4x . cosx                {using C.D. formula}

                     = 2sin4x (cos3x cosx)

Denominator  = (cos 3x cos5x) – (cosx cos7x)

                           = 2sin4x sinx 2sin4x sin3= 2sin4x (sinx sin3x)

∴  the given expression = cos3xcosxsinxsin3x=cosxcos3xsin3xsinx=2sin2xsinx2cos2xsinx=tan2x

4. GRAPH OF TRIGONOMETRIC FUNCTIONS

1. Graph of y = sin x

Domain : R

Range : [–1, 1]

2. Graph of y = cos x

Domain : R

Range : [–1, 1]

3. Graph of y = tan x

Domain : R(2n+1)π2:nI

Range : R

TRIGONOMETRIC EQUATIONS

5. BASIC TRIGONOMETRIC EQUATIONS

  Consider the following:

cosθ – sinθ = 1        …(i)

|sec(θ –π/4)|  = 2  …(ii)

sin2θ + cos2θ = 1    …(iii)

Equation (i) is satisfied if we put θ = 0, 2π, 4π,…….etc. in it. Equation (ii) is satisfied if we put θ=7π12,11π12,π12, etc. in it. But equation (iii) is satisfied for any value of θ. Equations (i) & (ii) are called trigonometric equations while (iii) is a trigonometric identity.

A trigonometric equation has three kinds of solutions:

1. Principal solution : Numerically smallest value of the unknown angle satisfying the given equation.

2. Particular solution : Any value of angle satisfying the given equation.

3. General solution : Collection of all particular solutions.

Illustration-12:

Find the principal solutions of following equations:

(i) tanθ=13     (ii) secθ=2     (iii) cotθ=3     (iv) cosecθ=2

Solution:

(i) tanθ is positive in Ist and IIIrd quadrant.

  tanπ6=13 and tanπ+π6=13

Also, π6,π+π6[0,2π)

∴ Principal solutions are π6,7π6.

(ii) secθ is positive in Ist and IVth quadrant.

secπ3=2 and sec2ππ3=2

Also, π3, 2ππ3[0,2π)

∴  Principal solutions are π3, 5π3.

(iii) cotθ is negative in IInd and IVth quadrant.

Now, cotπ6=3cotππ6=3 and cot2ππ6=3    

  cot5π6=3 and cot11π6=3

Also,    5π6,11π6[0,2π)

∴ Principal solutions are  5π6,11π6

(iv) cosec θ is negative in IIIrd and IVth quadrant.

Now, cosecπ6=2cosecπ+π6=2 and cosec2ππ6=2

  cosec7π6=2 and cosec11π6=2

Also, 7π6,11π6[0,2π)

∴ Principal solutions are 7π6,11π6.

1. GENERAL SOLUTION OF SOME SIMPLE TRIGONOMETRIC EQUATIONS

(i) sinθ = 0  θ = nπ

(ii) cosθ = 0   θ=(2n+1)π2

Illustration-13:  

Solve sin2x+cosx=0.

Solution:

sin2x+cosx=0 cosx{2sinx+1}=0

cosx=0   or sinx=12=sin7π6

  x=(2n+1)π2  or  x=+(1)m7π6,m,nI

Illustration-14:

Solve sinx = tanx.

Solution:

sinx=tanxsinxsinxcosx=0sinxcosx1cosx=0

  sinx(cosx1)=0    sinx=0 or cosx=1

sinx=0x=, nI

cosx=1cosx=cos0 x=2±0, mI or x=2, mI

These solutions are included in the solutions x=, nI because 2m is also an integer.

∴ The solution is  x=nπ, nI

2. GENERAL SOLUTION OF sinθ = sinα

θ = np + (-1)nα, n ∈ l 

Illustration-15:

Solve the equations: (i)  cosec =2   (ii)  sin2θ=514

Solution:

 (i) cosec=2

or   sinmθ=12=sinπ6

 =+(1)nπ6, nI     θ=nmπ+(1)nπ6m, nI

(ii)   sin2θ=514

  sin2θ=sin18°=sinπ10

  2θ=nπ+(1)nπ10,nI     θ=nπ2+(1)nπ20,nI

3. GENERAL SOLUTION OF cosθ = cosα

θ=2±α, nI

Illustration-16:

Solve the equation sin3x+cos2x=0.

Solution:

We have, sin3x+cos2x=0 cos2x=sin3xcos2x=cosπ2+3x

2x=2±π2+3x, nI

Taking positive sign x=2π2, nI

Taking negative sign  x=25π10, nI

4. GENERAL SOLUTION OF tanθ = tanα

θ=+α,nI, where α(2m+1)π2,mI

Illustration-17:

Solve the equation tan2x=cot(x+π6).

Solution: tan2x=cotx+π6tan2x=tanπ2+x+π6tan2x=tan2π3+x

 2x=+2π3+x, nIx=+2π3,nI

Was this article helpful to you? Yes 1 No