Limits and Derivatives

1. CONCEPT OF LIMITS

1. INTRODUCTION

Consider the function fx=x21x1. Clearly f(x) is not defined at x = 1. At x = 1, f(x)=1111=00, which is meaningless.

X

.9

.99

.999

.9999

.99999

f(x)

1.9

1.99

1.999

1.999

1.99999

From the above table it is clear that as x approaches to 1 i.e. x 1 from the left hand side (means
x approaches 1 from the values less than 1) f(x) approaches to 2 i.e. f(x) 2. The number 2 is called the left limit of f(x) and in symbol we shall write limx1f(x)=2

Again let us study the behaviour of f(x) where x approaches towards 1 from the right-hand side.

X

1.1

1.01

1.001

1.0001

1.00001

f(x)

2.1

2.01

2.001

2.0001

2.00001

It is clear from the table that as x approaches to 2 i.e. x 2, from the right-hand side (means x
approaches 1 from the values greater than 1) f(x) approaches to 2 i.e. f(x) 2. Here 2 is called the
right-hand limit of f(x) and in symbol we will write limx1+f(x)=2

Thus we see that f(x) is not defined at x = 1 but its left-hand limit and right-hand limit as x 1 exist and are equal. When limx1f(x) and limx1+f(x) are equal we say limx1f(x) exist and is equal to 2.

2. MEANING OF ‘ x a ’

Let x be a variable and ‘a’ be a constant. If x assumes values nearer and nearer to ‘a’ but x is strictly
smaller than ‘a’ then this statement is mathematically written as xa.

Similarly, xa+, implies that x assumes values nearer and nearer to ‘a’ but x is strictly greater
than ‘a’.
In general by ‘x tends to a’ we mean that
(i) x ≠ a
(ii) x assumes values nearer and nearer to ‘a’ and
(iii) we are not specifying the manner in which x should approach to ‘a’.

x may approach to ‘a’ from left or right as shown in figure.

If ‘x’ approach to ‘a’ from any point on the right of x = a in the real number line (i.e. the x axis) but
it never crosses x = a , then it is written as xa+.

Similarly,

3. NEIGHBOURHOOD OF ‘x = a ’
For some h > 0, sufficiently small, let the function y=f(x) be defined in the interval (a − h, a) then it is said that the function y = f(x) is defined in the left-neighbourhood of x = a.

Similarly, if the function y = f(x) be defined in the interval (a, a + h) then it is said that the function
y = f(x) is defined in the right-neighbourhood of x = a.

If the function y = f(x) be defined in left-neighbourhood of x = a or right-neighbourhood of x = a,
then it is said that the function y = f(x) is defined in the neighbourhood of x = a .

It must be noted here that the value ‘a’ itself may or may not be included in the domain which is
actually not being considered in its neighbourhood.

4. INDETERMINATE FORMS
Some times we come across some functions which do not have definite value corresponding to some particular value of the variable.

For example, the function f(x) = x24x2, converts into 00 if x = 2 is substituted.

Hence, f (2) cannot be determined. Such a form is called an Indeterminate Form.

There are total 7 Indeterminate Forms given as

(1) 00,   (2) ,   (3) , , (4) 0×,   (5) 1,   (6) 0,   (7) 00

Note : Here 0 and 1 are all approaching values, not the exact values.

Illustration-1
Which of the following are forming indeterminate form. Also indicate the form

(i) 1x as x0

(ii) 1x1x2 as x1

(iii) xn  xas x0

(iv) 1x1x2 as x0

(v) (sinx)x as x0

(vi) (lnx)x as x0

(vii) (1+sinx)1x as x0

(viii) secxtanx as xπ2

Solution

(i) No

(ii) 00 form

(iii) 0 × form

(iv) ,  form

(v) (0)º form

(vi) ()º form

(vii) 1 form

(viii) form

5. LIMIT OF A FUNCTION
Definition-1
Let the function y = f(x) be defined in a certain neighbourhood of a point x = a . The function y = f(x) approaches the limit L (y L) as x approaches ‘a’ (x a). If for every positive number h, arbitrarily small, we are able to indicate k > 0, arbitrarily small, such that for all x, different from ‘a’ and satisfying the inequality.

xa<h

we have the inequality

|f(x)L|<k

then limx2 f(x)=L

or f(x) L as x a or limiting value of f(x) is L as x a.

Definition-2
Let y = f (x) be a function of x and the limiting value of y is required for x a, then we consider the values of the function at the points which are very near to ‘a’.
If these values tend to a definite unique number L as x tends to ‘a’ (either from left or from right)
then this unique number L is called the limit of f(x) at x = a and we write it as limxaf(x)=L

Illustration-2

Evaluate limx2(x+2)

Solution

x + 2 being a polynomial in x, its limit as x 2 is given by limx2(x+2)=2+2=4

Illustration-3

Evaluate limx2x(x1)

Solution

x(x – 1) being a polynomial in x, its limit as x 2 is given by limx2x(x1)=2(21)=2

Illustration-4

Evaluate limx2x2+4x+2

Solution

limx2x2+4x+2=(2)2+42+2=2

Illustration-5

Evaluate limx0 cos (sinx)

Solution

limx0cos(sinx)=coslimx0sinx=cos0=1

Illustration-6

Find the limiting value of f(x)=x29x3 as x3.

Solution

At x = 3, fx=x29x3 converts into an indeterminate form of 00.

Now when x tends to 3 from left or from right, it can be easily observed from the graph that the value of f(x) tends to 6.

Hence

limx3x29x3=limx3(x3)(x+3)(x3)

=limx3(x+3)=3+3=6

6. LEFT HAND AND RIGHT HAND LIMIT

Consider the values of the functions at the points which are very near to a on the left of a. If these
values tend to a definite unique number as x tends to a, then the unique number so obtained is called left-hand limit of f(x) at x = a and symbolically we write it as f(a0)=limxaf(x)=limh0f(ah)

which is expressed as f(a+0)=limxa+f(x)=limh0f(a+h).

7. EXISTENCE OF LIMIT

The limit of a function f(x) at a point x = a exists and equals to L if limxaf(x)=limxa+f(x)=a finite value, L.

Here limxaf(x) and limxa+f(x) are called left hand limit (L.H.L.) and right hand limit (R.H.L.)
respectively.

Thus, if limxaf(x) exists then limxaf(x)=limxa+f(x)=a finite value, L L.H.L. = R.H.L. = L

limxaf(x)=L

Illustration-7

The value of limx1[x] is, where [ ] represents the greatest integer function.

(A) 1     (B) 2     (C) 4     (D) Does not exist

Solution

Left hand limit = limx1f(x)=limx1[x]=0

and Right hand limit = limx1+f(x)

= limx1+[x]=1

limx1f(x)limx1+f(x)

∴ limit does not exist.

Illustration-8

If f(x)=11+e1/xx00,x=0 then at x = 0

(A) right hand limit of f(x) exists but not left-hand limit
(B) left-hand limit of f(x) exists but not right- hand limit
(C) both limits exists but are not equal
(D) both limits exist and are equal

Solution

f0=limh011+e1/h=11+=0

f0+=limh011+e1/h=11+0=1

∴ Both limits exist but are not equal.

Illustration-9

Find limx1f(x)

Solution
Left hand limit = 1
Right hand limit = 2
Hence limx1f(x) does not exist.

Illustration-10

From the adjoint graph of y = f(x), find

(i) limx0f(x)

(ii) limx1f(x)

(iii) limx2f(x)

(iv) limx3f(x)

(v) limx4f(x)

Solution

(i) Here L.H.L. = 2 and R.H.L. = 1

limx0f(x) does not exist

because left hand limit ≠ right hand limit.

(ii) limx1f(x)=0

(iii) limx2f(x)=1

(iv) limx3f(x)=1

(v) limx4f(x)=1

8. EVALUATION OF LEFT HAND AND RIGHT HAND LIMITS

Right-hand limit means tendency of function when we approach x = a from the value which just greater than ‘a’ and we write limxa+f(x).

Working rule to evaluate limxa+f(x)

• Put x = a + h in f(x) to get limh0f(a+h)

• Take the limit as h 0

Left-hand limit means tendency of function when we approach x = a from the values which are just less than ‘a’ and we write limxaf(x).

Working rule to evaluate limxaf(x)

• Put x = a – h in f(x) to get limh0f(ah)

• Take the limit as h 0

Illustration-11

If f(x)=2x+3 if x03(x+1) if x>0.

Find left and right hand limits and choose whether f (x) has limit at the point x = 0.

Solution

f(x)=2x+3 if x0  3(x+1) if x>0

Ltx0f(x)=Ltx0(2x+3)=2(0)+3=3

Ltx0+f(x)=Ltx0+3(x+1)=3(0+1)=3

Ltx0 f(x)=Ltx0+f(x)=3

Ltx0f(x)=3

Illustration-12

If f(x) = x2 if x 1

                       x if 1 < x 2

                       x–3 if x > 2

Find left and right hand limits and check whether f(x) has limit at the point x = 1 ; 2.

Solution

Ltx1f(x)=Ltx1xx=1

Ltx1+f(x)=Ltx1+xx=1

Ltx1f(x)=Ltx1+xx=1

Ltx1f(x)=1

Now, Ltx2f(x)=Ltx2x=2

Ltx2+f(x)=Ltx2+x3=23=1

Ltx2f(x)Ltx2+fx

 Ltx2f(x) does not exists.

3. DIFFERENCE BETWEEN THE VALUE OF A FUNCTION AT A POINT AND THE LIMIT AT A POINT

Case 1: limxa(x) and f(a) both exist but are not equal.

Example

f(x)=x21x1,x1x=1

limx1f(x)=limx1x21x1=limx1(x+1)2

f(x) exists at x = 1

f(1) = 0, value of f also exist at x = 1

But limx1f(x)=f(1)

Case 2: limxa(x)and f(a) both exist and are equal.

Example

f(x) = x2

limx1f(x)=limx1x2=1, limit exists, and f(1) = (1)2 = 1 Value of also exist.

limx1f(x)=f(1)

4. THEOREMS ON LIMITS AND EVALUATION OF ALGEBRAIC LIMITS

1. FUNDAMENTAL THEOREMS ON LIMITS

The following theorems are very useful for evaluation of limits if limx0f(x)=l  and limx0g(x)=m (l and m are real numbers) then

(1) limxa(f(x)+g(x))=l+m         (Sum rule)

(2) limxa(f(x)g(x))=lm        (Difference rule)

(3) limxa(f(x).g(x))=l.m              (Product rule)

(4) limxakf(x)=k.l                        (Constant multiple rule)

(5) limxaf(x)g(x)=lm, m0          (Quotient rule)

(6) If limxaf(x)=+ or , then limxa1f(x)=0

(7) limxalog{f(x)}=loglimxaf(x)

(8) If f(x)g(x) for all x, then limxaf(x)limxag(x)

(9) f(x)g(x) for all x, then limxaf(x)limxag(x)

(10) If p and q are integers, then limxa(f(x))p/q=lp/q, provided (l)p/q is a real number.

(11) If limxaf(g(x))=flimxag(x)=f(m) provided ‘f ’ is continuous at limxaln[f(x)]=ln(l), only if l > 0.

2. EVALUATION OF LIMITS INVOLVING ALGEBRAIC FUNCTIONS.

To evaluate the limits involving algebraic functions we use the following methods:
1) Direct substitution method
2) Factorisation method
3) Rationalisation method
4) Application of the standard limit

Ltxaxnanxa=n.an1

1. Direct substitution method

This method can be used in the following cases :

i) If f(x) is a polynomial function, then Ltxaf(x)=f(a).

ii) If f(x)=P(x)Q(x) where P(x) and Q(x) are polynomial functions then Ltxaf(x)=P(a)Q(a), provided Q(a) ≠ 0.

Illustration-13

Find Ltx12x2+3x+4

Solution

Ltx12x2+3x+4=2(1)2+3(1)+4=9.

Illustration-14

Find Ltx12x13x24x+5

Solution

Ltx12x13x24x+5=2(1)13(1)24(1)+5=14.

2. Factiorisation Method

This method is used when Ltxaf(x)g(x) turns out to be an indeterminate form of the type 00 by the substitution of x = a.

In such a case the numerator (Nr.) and the denominator (Dr.) are factorised and the common factor (x – a) is cancelled. After eliminating the common factor the substitution x = a gives the limit, if it exists.

Illustration-15

Evaluate  Ltx2 x25x+6103xx2.

Solution

 Ltx2 x25x+6103xx2

= Ltx2(x2)(x3)(x+5)(x2)

= Ltx2 x3(x+5) (x2)=17

Illustration-16

Evaluate Ltx21x24x24.

Solution

Ltx21x24x24 ( form )

=Ltx2x2400 form =Ltx21x+2=14

(Cancelling the common factor (x–2)).

3. Rationalisation Method

This method is used when Ltxaf(x)g(x) is a 00 form and either the Nr. or Dr. consists of expressions
involving radical signs.

Illustration-17

Show that Ltx1 x1x2+32=2

Solution

Ltx1x1x2+32=Ltx1(x1)x2+3+2x2+32x2+3+2

=Ltx1 (x1)x2+3+2x2+34 = Ltx1 (x1)x2+3+2x21 = Ltx1 (x1)x2+3+2(x1)(x+1) (x1).

=Ltx1x2+3+2x+1=2+22=2

Illustration-18

Evaluate Ltx01+x31x3x2

Solution

Ltx01+x31x3x2 = Ltx01+x31x31+x3+1x3x21+x3+1x3

= Ltx01+x31x3x21+x3+1x3

= Ltx02x3x21+x3+1x3

= Ltx02x1+x3+1x3=2(0)1+0+10=0.

4) Application of the standard limit Ltxaxnanxa=n.an1

This method is explained through the following examples.

Illustration-19

Compute Ltx3x481x3

Solution

Ltx3x481x3=Ltx3x434x3(a=3, n=4)

= 4.341=4(27)=108.

Illustration-20

Find Ltx0(2+x)n2nx

Solution

Let 2 + x = t. Then x0t2.

Ltx0(2+x)n2nx=Ltt2tn2nt2=n.2n1.

Illustration-21

Show that Ltx0(a+x)n(ax)nx=2.n.an1.

Solution

Ltx0(a+x)n(ax)nx

=Ltx0(a+x)nanx+(ax)nanx

= Ltx0(a+x)nanxi+Ltx0(ax)nanxii

Put a + x = t in (i) and a – x = s in (ii) then x 0 t a, s a

∴ Given limit = Lttatnanta+Ltsasnansa

= n.an1+n.an1=2n.an1.

Note:

i) Ltx0(a+x)nanx=n.an1.

ii) Lth0(ah)nanh=n.an1.

iii) Lth0(ah)nanh=n.an1.

Illustration-22

Evaluate Ltx0(1+x)18(1x)18x.

Solution

Ltx0(1+x)18(1x)18x

= Ltx0(1+x)181x+Ltx0(1x)181x

= 18(1)181+18(1)181=14.

5. EVALUATION OF TRIGONOMETRIC LIMITS

To evaluate trigonometric limit the following results are very important.

(i) limx0sinxx=1=limx0xsinx

(ii) limx0tanxx=1=limx0xtanx

(iii) limx0sin1xx=1=limx0xsin1x

(iv) limx0tan1xx=1=limx0xtan1x

(v) limx0sinx0x=π180

(vi) limx0cosx=1

(vii) limxasin(xa)xa=1

(viii) limxatan(xa)xa=1

(ix) limxasin1x=sin1a,|a|1

(x) limxacos1x=cos1a; |a|1

(xi) limxatan1x=tan1a;<a<

(xii) limxsinxx=limxcosxx=0

(xiii) limxsin(1/x)(1/x)=1

Illustration-23

Find Ltx0sin2xsin3x

Solution

Ltx0sin2xsin3x=Ltx0sin2x2x3xsin3x23

= 1.1.23=23

Note:

Ltx0sinaxsinbx=ab, Ltx0sinaxsinbxx=ab.

Illustration-24

Find Ltx0tanaxtanbxx

Solution

Ltx0tanaxtanbxx=Ltx0tanaxxLtx0tanbxx

= Ltx0tan(ax)ax.aLtx0tan(bx)bx.b = 1.a – 1. b = a – b.

Illustration-25

Evaluate

(i) Ltx0sinx0x

(ii) Ltx0sinx0x0

Solution

(i) 10=π180 radians  x0=π x180 radians

 Ltx0sinx0x=Ltx0sinπ180x = Ltx0sinπ x180π x180.π180=1.π180=π180

(ii) Ltx0sinx0x0=Ltx0sinπ  x180π x180=Ltx0sintt=1.

(Where t = πx100 and x 0 t 0)

Illustration-26

Find Ltxasin(xa)+tan(xa)x2a2

Solution

Let x – a = t then x a t 0; x + a = t + 2a

Ltxasin(xa)+tan(xa)x2a2

=Ltt0sint+tantt(t+2a)=Ltt0sintt+tantt1t+2a

= (1+1)12a=1a.

Illustration-27

Evaluate Ltx0cosecxcotxx

Solution

Ltx0cosecxcotxx =Ltx01x1cosxsinx

Limx01x2sin2x/22sinx/2 cosx/2

=Limx0tanx/2x=12

Illustration-28

Evaluate Ltxπ/21sin3xcos2x=

Solution

Ltxπ/21sin3xcos2x=Ltxπ/21+sin2x+sinx1+sinx =1+1+11+1=32

Illustration-29

Evaluate Ltx0tanxsinxx3

Solution

Ltx0tanxsinxx3=Ltx0sinx1cosx1x3.

= Ltx0sinx1cosxcosxx3=Ltx0tanxx2sin2x2x2 = 12×122=12.

Illustration-30

Compute Ltx0(cosecxcotx)

Solution

Ltx0(cosecxcotx) = Ltx01cosxsinx

=Ltx02sin2x22.sinx2.cosx2 = Ltx0tanx2=tan(0)=0.

Illustration-31

Find Ltxπ2 cosxπ2x

Solution

Put π2x=t then xπ2t0

Ltxπ2 cosxπ2x=Ltt0cosπ2tt

= Ltt0 sin tt=1.

Illustration-32

Show that Ltx0sinaxx=a(aR)

Solution

Ltx0sinaxx=Ltx0sin(ax)ax.a

= a.Ltt0 sintt=a.1 = a (where t = ax)

Illustration-33

Show that Ltx0sin1(x)x=1

Solution

Let sin1(x)=t so that x = sint, then x 0 t 0

  Ltx0 sin1(x)x=Ltx0 tsint=1.

Illustration-34

Show that Ltx01cosax1cosbx=a2b2

Solution

Ltx01cosax1cosbx=Ltx02sin2ax22sin2bx2 = Ltx0sinax2xsinbx2x2=a22b22=a2b2.

Illustration-35

Show that Ltx0 sinxx does not exist.

Solution

|sinx|=sinx if π2<x<0+sinx if 0<x<π

Ltx0|sinx|x=Ltx0sinxx=1

Ltx0+|sinx|x=Ltx0+sinxx=1

As x 0, LHL ≠ RHL

Ltx0|sinx|x does not exist.

6. EVALUATION OF EXPONENTIAL AND LOGARITHMIC LIMITS

1. LOGARITHMIC LIMITS

To evaluate the logarithmic limits we use following formulae

(i) log(1+x)=xx22+x33. to ∞ where 1<x1 and expansion is true only if base is e.

(ii) limx0log(1+x)x=1

(iii) limxelogex=1

(iv) limx0log(1x)x=1

(v) limx0loga(1+x)x=logae, a>0, 1

2. EXPONENTIAL LIMITS
i. Based on series expansion

We use ex=1+x+x22!+x33!+.

To evaluate the exponential limits we use the following results

(a) limx0ex1x=1

(b) limx0ax1x=logea

(c) limx0eλx1x=λ(λ0)

ii. Based on the form 1 :

To evaluate the exponential form 1 we use the following results.

(a) If limxaf(x)=limxag(x)=0, then

limxa{1+f(x)}1/g(x)=elimxaf(x)g(x) or when limxaf(x)=1 and limxag(x)=.

Then limxa{f(x)}g(x)=limxa[1+f(x)1]g(x) = elimxa(f(x)1)g(x)

(b) limx0(1+x)1/x=e

(c) limx1+1xx=e

(d) limx0(1+λx)1/x=eλ

(e) limx1+λxx=eλ

limxax=, if a>10, if a<1 i.e., a=, if a > 1 and a=0 if a < 1.

Illustration-36

Evaluate Ltx027x9x3x+1x2.

Solution

Ltx027x9x3x+1x2 = Ltx09x13x1x2

= Ltx09x1x.Ltx03x1x = log 9. log3

Illustration-37

Evaluate Ltx0ex2cosxx2.

Solution

Ltx0ex2cosxx2=Ltx0ex1+(1cosx)x2

= Ltx0ex21x2+Ltx01cosxx2 = 1+12=32.

Illustration-38

Evaluate Ltx0(1+ax)b/x where a, b are constants.

Solution

We know that Ltt0(1+t)t=e.

Now, Ltx0(1+ax)b/x=Ltx0(1+ax)1axax·bx

Ltx0(1+ax)1axab=Ltt0(1+t)1tab, (where t = ax)

= eab

Aliter:

The given limit is of the form 1.

Ltx0(1+ax)bx=eLtx0bx1+ax1=eLtx0ax=eab.

Illustration-39

Evaluate Ltx1+1ax+bcx+d where a,b,c,d are positive constants.

Solution

Ltx1+1ax+bcx+d (1 form)

=Ltx1+1ax+bax+bcx+dax+b = Ltx1+1ax+bax+bLtxcx+dax+b = eab

Aliter: Ltx1+1ax+bcx+d = eLtx(cx+d)1+1ax+b1

= eLtxcx+dax+b=ec/a

Illustration-40

Find Ltx0sinxxsinxxsinx

Solution

The given limit is of 1 form

Ltx0sinxxsinxxsinx = eLtx0sinxxsinxsinxx1 = eLtx0sinxx=e1.

Illustration-41

Find Ltxx+ax+bx, a, b are constants.

Solution

Ltxx+ax+bx = Ltx1+x+axb1x

= Ltx1+abx+bx = Ltx1+abx+bx+bababxx+b

= Ltx1+1ttLtxabxx+b, where t=x+bab

= eab.

Illustration-42

Evaluate Ltxx2+ax+bx2+cx+dx where a,b,c,d are constants.

Solution

Ltxx2+ax+bx2+cx+dx 1  form

= eLtxx2+ax+bx2+cx+d1=eLtxx[(ac)x+(bd)]x2+cx+d

= eLtx(ac)+(bd)x1+cx+dx2=eac

Illustration-43

Evaluate Ltx0ax+bx+cx31x where a,b,c R+

Solution

The given limit is of 1form

Ltxax+bx+cx31x

= eLtx01xax+bx+cx31=eLtx013ax+bx+cx33

= e13.Ltx0ax1x+bx1x+cx1x

= e13loga+logb+logc=elnabc3=abc3.

Note :

i) Ltx01x+2x++nxn1x=n!n.

ii) Ltxa1x+b1x+c1x3x=abc3.

Illustration-44

If Ltx01+ax+bx22/x=e3, find a and b.

Solution

e3=Ltx01+ax+bx22x 1form

= eLtx02x1+ax+bx21

= e2.Ltx0ax+bx2x = e2.Ltx0a+bx = e2a, for any bR

e3=e2a and bR a=32, bR

7. EVALUATION OF LIMITS BY USING DE’L’ HOSPITAL’S RULE

1) Let f(x) and g(x) be two functions such that Ltxaf(x)=0 and Ltxag(x)=0

Then Ltxaf(x)g(x)=Ltxaf(x)g(x) provided the latter limit exists. (Here ‘ denotes differentiation wrt x)

2) Let f(x) and g(x) be two functions such that Ltxaf(x)= and Ltxag(x)=.

Then Ltxaf(x)g(x)=Ltxaf(x)g(x) provided the latter limit exists.

Note:

i) L’ Hospital’s rule can be applied repeatedly i.e., Ltxaf(x)g(x)=Ltxaf(x)g(x)=Ltxaf(x)g(x)=... provided these limits exist and at each stage of application of the rule, we should make sure that the limit is either a 00 from or an form.

ii) While applying the L’Hospital’ s rule the derivatives of the Numerator f(x) and the Denominator g(x) w.r.t x are to be calculated separately and at the same time, but not by using quotient rule on f(x) / g(x).

iii) L’Hospital’s rule is directly applicable to 13 and forms only. This rule is not applicable directly to other indeterminate forms. 0.,,1,0° and ° but can be applied only after transforming them into either 00 form or form.

Illustration-45

Find Ltx01cosxx2

Solution

Ltx01cosxx200 form =Ltx00+sinx2x

=12Ltx0sinxx00 form 

=12Ltx0cosx1=12cos(0)=12.

Illustration-46

Evaluate Ltxaxaaxxxaa.

Solution

Ltxaxaaxxxaa00 form =Ltxaa.xa1axlogaxx(1+logx)0

=a.aa1aalogaaa(1+loga)=1loga1+loga=logealog(ea).

Illustration-47

Find Ltxlogxx.

Solution

Ltxlogxx form ·=Ltx1x1=Ltx1x=0.

Illustration-48

If Ltx0cos4x+acos2x+bx4 is finite find the values of a and b. Also find the limit.

Solution

Let l=Ltx0cos4x+acos2x+bx4=1+a+b0

This can be finite only if 1 + a + b = 0 — (1)

=Ltx04sin4x2asinx4x3 (applying L’ Hospital’s rule)

=Ltx016cos4x4acos2x12x2 (applying L’ Hospital’s rule) = 164a0

This can be finite only if – 16 – 4a = 0 — (2)
From (2), a = – 4
From (1), b = 3 a = –4, b = 3.

Now, required limit is =Ltx016cos4x+16cos2x12x2

=Ltx043cos4x+cos2xx200 form  = 43Ltx04sin4x2sin2x2x

=43Ltx02sin4xx+sin2xx=43(8+2)=403.

8. SOME USEFUL RESULTS AND FREQUENTLY USED EXPANSIONS

1. SOME USEFUL RESULTS

i. Let S = {x,sin x, tan x,sinh x, tanh x,sin-1 x, tan-1 x,sinh-1 x, tanh-1 x}

If f (x), g(x)S then Ltx0f(mx)g(nx)=mn

If f1(x), f2(x), g1(x), g2(x)S then Ltx0f1(mx)±f2(nx)g1(px)±g2(qx)=m±np±q

ii. Ltx0sin axtan bx=ab,Ltx01cos axx2=a22

2. EVALUATION OF LIMITS USING SERIES EXPANSIONS

In the evaluation of certain limits it becomes necessary to use the following series expansions:

i) ex=1+x1!+x22!+x33!+.(xR)

ii) ax=1+x1!(lna)+x22!(ℓna)2+x33!(lna)3+….(a>0, xR)

iii) ℓn(1+x)=xx22+x33x44+,|x|<1

iv) (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+.(nQ,|x|<1)

v) sinx=xx33!+x55!x77!+.  (xR)

vi) cosx=1x22!+x44!x66!+.  (xR)

vii) tanx=x+x33+215x5+17315x7+

viii) sinhx=x+x33!+x55!+.  (xR)

ix) coshx=1+x22!+x44!+x66!+  (xR)

x) (1+x)1/x=e1x2+1124x2+

xi) sin1x=x+12.x33!+12.32.x55!+12.32.52.x77!+

xii) tan1x=x13x3+15x5

xiii) sec1x=1+x22!+5·x44!+61x66!+

Illustration-49

Find Ltx0sinxx+x36x5.

Solution

Ltx0sinxx+x36x5

=Ltx0xx33!+x55!x77!+x+x36x5

=Ltx0x55!x77!+x5

=Ltx0 (15!x27!+terms containing positive integral powers of x)

=15!=1120.

Illustration-50

Find the values of a,b and c if Ltx0aexbcosx+cexx2=2

Solution

Ltx0aexbcosx+cexx2=Ltx0a1+x+x22!+x33!+b1x22!+x44!+..+c1x+x22!x33!+..x2

=Ltx01x2(ab+c)+(ac)x+a+b+c2x2+(.)x3+...

=Ltx0ab+cx2+acx+(a+b+c)2+ terms containing positive powers of x

The limit is finite and is equal to 2 only if

a – b + c = 0 — (1),      a – c = 0 — (2)

and a+b+c2=2…..(3)

Solving (1) (2) and (3), a = 1, b = 2, c = 1.

Illustration-51

Evaluate Ltx0(1+x)1xe+ex2sin2x

Solution

Ltx0(1+x)1xe+ex2sin2x = Ltx0(1+x)1/xe+ex2x2.x2sin2x

= Ltx0(1+x)1/xe+ex2x2.1 = Ltx0e1x2+1124x2+e+ex2x2

= Ltx0 (11e24+term containing positive powers of x)

= 11e24.

9. SANDWICH THEOREM OR SQUEEZE PRINCIPLE

If f(x)g(x)h(x)x &  Limitxa f(x)==Limitxah(x) then  Limitxa g(x)=

Illustration-52

Evaluate limn[x]+[2x]+[3x]+.+[nx]n2, Where [ ] denotes the greatest integer function.

Solution

We know that, x – 1 < |x| x

 2x1<2x2x 3x1<3x3x..........................................................

 nx1<[nx]nx

(x + 2x + 3x + …. + nx) – n < [x] + [2x] + ….. +[nx] (x + 2x + …. + nx)

  xn(n+1)2n<r=1n[rx]x.n(n+1)2

Thus, limn[x]+[2x]+.+[nx]n2

  limnx21+1n1n< limn[x]+[2x]+.+[nx]n2limnx21+1n

  x2<limn[x]+[2x]+.+[nx]n2x2limn[x]+[2x]+.+[nx]n2=x2

Illustration-53

Find Ltx[ax+b]x(a>0).where [.] denotes the GIF.

Solution

For any x R, we know that x – 1 < [x] x

 ax+b1<[ax+b]ax+b

ax+b1x<[ax+b]xax+bxLtxax+b1xLtx[ax+b]xLtxax+bx

aLtx[ax+b]xaLtx[ax+b]x=a.

10. MISCELLANEOUS CONCEPTS AND PROBLEMS

1. METHOD OF EVALUATING LIMITS OF ALGEBRAIC FUNCTIONS OF X WHEN X±

We make use of the following basic limits.

i) x±1x0, kx0 (k is a constant)

ii) If n>0 then Ltxxn=,  Ltx1xn=0

iii) If nZ+, then Ltxx2n=+,Ltxx2n+1=,

Ltx1x2n=0, Ltx1x2n+1=0, Ltx1xn=0

Illustration-54

Evaluate Ltx6x2x+7x+3

Solution

Ltx6x2x+7x+3=Ltxx261x+7x2x1+3x

=Ltxx62x+7x21+3x=.(60+0)(1+0)=+

Illustration-55

Find Ltx5x3+42x41

Solution

Ltx5x3+42x4+1=Ltxx35+4x3x22+1x4

Ltxx5+4x32+1x4=()·(5+0)2+0=

2. EVALUATION OF INFINITE LIMITS

In evaluating this type of limits, we use the following basic results on limits :

i) Ltx01x=, Ltx0+1x=+, Ltx01x = does not exist.

ii) Ltxa1xa=, Ltxa+1xa=+, Ltxa1ax=+, Ltxa+1ax=

Ltxa1xa does not exist. For a positive integer, n

iii) Ltx01x2n=+, Ltx01x2n+1=, Ltxa1x2n+1=+

iv) Ltxa1(xa)2n=+, Ltxa1(xa)2n+1=, Ltxa+1(xa)2n+1=+.

v) Ltxa1(ax)2n=+, Ltxa1(ax)2n+1=+, Ltxa+1(ax)2n+1=.

vi) Ltxaf(x)=Ltxa1f(x)=0.

vii) Ltxaf(x)=Ltxa1f(x)=0.

viii) If Ltxaf(x)=0 and f(x) > 0 in a deleted nbd of a then Ltxa1f(x)=+.

ix) If Ltxaf(x)=0 and f(x) < 0 in a deleted nbd of a then Ltxa1f(x)=.

x) If Ltxaf(x)=0 then Ltxa1f(x) may or may not exist.

Illustration-56

Find Ltx3x2+3x+2x26x+9

Solution

Since Ltx3x2+3x+2=20 and Ltx3x26x+9=0

the given limit  Ltx3x2+3x+2x26x+9 can not be finite.

For x ≠ 3, x26x+9=x32>0 and x2+3x+2>0 in a nbd, of the point 3.

Let f(x)=x26x+9x2+3x+2. Then f(x)>0 in a deleted nbd of 3 and Ltx3f(x)=Ltx3(x3)2x2+3x+2=0Ltx31f(x)=+

Hence Ltx3x2+3x+2x26x+9=+.

3. EVALUATION OF LIMITS OF FORM : , 0., 00 and 0

i) If Ltxa[f(x)g(x)] is of the form , it can be transformed to 00form or form by writing it as Ltxaf(x)1g(x) or Ltxag(x)1f(x) and hence can be evaluated.

iii) If Ltxa fxgx is of the form 00 or 0 , it can be expressed as eLtxagx.lnfx so that the limit in the exponent is a 0. form and hence can be evaluated as in (ii).

Illustration-57

Determine Ltx01sin2x1sinh2x( form )

Solution

Ltx01sin2x1sinh2x=Ltx0sinh2xsin2xsin2x.sinh2x

=Ltx0sinh2xsin2xx4.xsinx2.xsinhx2

=Ltx0sinh2xsin2xx400 form 

=Ltx0sinh2xsin2x4x300 form 

=Ltx0cosh2xcos2x6x200 form 

=Ltx016sinh2x+sin2xx=16(2+2)=23.

Illustration-58

Find Ltx0(xlog(tanx))  (0. form )

Solution

Ltx0(xlog tanx) = Ltx0 log(tanx)1x form

= Ltx0sec2xtanx1x2=Ltx0x2sec2xtanx

= Ltx0xxtanx.sec2x=0.1.1=0.

Illustration-59

Evaluate Ltx0xx.00 form .

Solution

Ltx0xx=eLtx0x.logx=el, say

Then =Ltx0xlogx(0. form )

=Ltx0logx1x   form  = Ltx01x1x2=Ltx0(x)=0

  Ltx0xx=e=e0=1.

Illustration-60

Ltx0+1xtanx   0 form

Solution

Let y=1xtanx

Then log y = tan x log1xy=etanx.logx

  Ltx0+ y=eLtx0+(tanx·logx)=e, say 

Then, =Ltx0+tanx.logx(0. form )

=Ltx0+logxcotx form  = Ltx0+1xcosec2x=Ltx0+(sinx)sinxx=0

Ltx0+y=e=e0=1.

11. DERIVATIVES

We know that the tangent line to the curve y = f(x) at the point (a,f(a)) has slope

m=m(a)=limh0f(a+h)f(a)h

The derivative of the function f is the function f ‘ define by for all x for which this limit exist.

f(x)=limh0f(x+h)f(x)h

Illustration-61

Find the derivative of fx=1x.

Solution

We have f(x)=limh0f(x+h)f(x)h=limh01(x+h)1xh = limh01hx(x+h)x(x+h)

=limh01hhx(x+h)=limh01x(x+h)=1x2

12. DERIVATIVES OF SOME OF THE FREQUENTLY USED FUNCTIONS

Function

Derivative

c (constant)

0

sinx

cosx

cos x

–sinx

tanx

sec2x

xn

nxn1

The above written derivatives can be easily found by using the definition of differentiation.

13. RULES TO FIND OUT DERIVATIVES

Let u and v are differentiable functions of ‘x’.

(i) The sum rule

ddx(u+v)=dudx+dvdx

e.g. ddx2ex+3logx=2dexdx+3d(logx)dx=2ex+3x

(ii) Product rule

d(uv)dx=udvdx+vdudx

e.g. d(sinx)exdx=sinxdexdx+exd(sinx)dx

= (sinx) ex + (cosx) ex.

Illustration-62:

Differentiate x2exsinx.

Solution:

First we differentiate x2ex

ddxx2ex=x2ddxex+exddxx2=x2ex+2xex

Now, ddxx2exsinx=x2exddx(sinx)+sinxddxx2ex

=x2excosx+sinxx2+2xex

=exx2cosx+x2sinx+2xsinx=xex(xcosx+xsinx+2sinx)

(iii) The quotient rule

Here v(x) ≠ 0

ddxuv=vdudxudvdxv2

e.g. ddxtanxx=xd(tanx)dx(tanx)dxdxx2

=xsec2xtanxx2

Illustration-63:

Differentiate  ex1+sinx

Solution:

ddxex1+sinx=(1+sinx)ddxexexddx(1+sinx)(1+sinx)2

=(1+sinx)exexcosx(1+sinx)2=ex(1+sinxcosx)(1+sinx)2

(iv) Chain rule

The chain rule is probably the most widely used differentiation rule in mathematics. Chain rule says that the derivative of the composite of two differentiable functions is the product of their derivatives evaluated at appropriate points.

The formula is [f(g(x))]=f(g(x)).g(x)

Illustration-64:

Differentiate sinx2

Solution:

Put y=x2  and z = siny

Then dydx=2x and dzdy=cosy

  ddxsinx2=dzdx=dzdy.dydx=(cosy)(2x) = cosx2(2x)=2xcosx2

This solution can be rewritten using a more convenient notation in the following manner:

ddxsinx2=dsinx2dx2.dx2dx = cosx2.2x=2xcosx2

Illustration-65:

Differentiate sin2x1+x2+e1+x2  with respect to x.

Solution:

Let y=sin2x1+x2+e1+x2

dydx=cos2x1+x2ddx2x1+x2+e1+x2ddx1+x2

dydx=21+3x21+x22cos2x1+x2+x1+x2e1+x2

Was this article helpful to you? Yes No